sums of powers
Recently Published Documents


TOTAL DOCUMENTS

303
(FIVE YEARS 36)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 27 (4) ◽  
pp. 140-148
Author(s):  
Peter J. Shiue ◽  
◽  
Shen C. Huang ◽  
Jorge E. Reyes ◽  
◽  
...  

The sums of powers of arithmetic progressions is of the form a^p+(a+d)^p +(a+2d)^p+\cdots+(a+(n-1)d)^p, where n\geq 1, p is a non-negative integer, and a and d are complex numbers with d\neq 0. This sum can be computed using classical Eulerian numbers \cite{worpitzky1883studien} and general Eulerian numbers \cite{xiong2013general}. This paper gives a new method using classical Eulerian numbers to compute this sum. The existing formula that uses general Eulerian numbers are more algorithmically complex due to more numbers to compute. This paper presents and focuses on two novel algorithms involving both types of Eulerian numbers. This paper gives a comparison to Xiong \textit{et al.}’s result with general Eulerian numbers \cite{xiong2013general}. Moreover, an analysis of theoretical time complexities is presented to show our algorithm is less complex. Various values of p are analyzed in the proposed algorithms to add significance to the results. The experimental results show the proposed algorithm remains around 70\% faster as p increases.


2021 ◽  
Vol 128 (8) ◽  
pp. 701-718
Author(s):  
Vitaly Bergelson ◽  
Andrew Best ◽  
Alex Iosevich
Keyword(s):  

2021 ◽  
Vol 51 (1) ◽  
pp. 77-95
Author(s):  
Aleksa Srdanov ◽  
Nada Ratković Kovačević
Keyword(s):  

Author(s):  
Christopher S. Withers ◽  
Saralees Nadarajah

2021 ◽  
Vol 27 (2) ◽  
pp. 101-110
Author(s):  
José Luis Cereceda

In this paper, we obtain a new formula for the sums of k-th powers of the first n positive integers, Sk(n), that involves the hyperharmonic numbers and the Stirling numbers of the second kind. Then, using an explicit representation for the hyperharmonic numbers, we generalize this formula to the sums of powers of an arbitrary arithmetic progression. Furthermore, we express the Bernoulli polynomials in terms of hyperharmonic polynomials and Stirling numbers of the second kind. Finally, we extend the obtained formula for Sk(n) to negative values of n.


2021 ◽  
Vol 17 (4) ◽  
pp. 59-69
Author(s):  
Spirit Karcher ◽  
Mariah Michael

The Fibonacci sequence, whose first terms are f0; 1; 1; 2; 3; 5; : : :g, is generated using the recursive formula Fn+2 = Fn+1 + Fn with F0 = 0 and F1 = 1. This sequence is one of the most famous integer sequences because of its fascinating mathematical properties and connections with other fields such as biology, art, and music. Closely related to the Fibonacci sequence is the Lucas sequence. The Lucas sequence, whose first terms are f2; 1; 3; 4; 7; 11; : : :g, is generated using the recursive formula Ln+2 = Ln+1 + Ln with L0 = 2 and L1 = 1. In this paper, patterns in the prime factors of sums of powers of Fibonacci and Lucas numbers are examined. For example, F2 3n+4 + F2 3n+2 is even for all n 2 N0. To prove these results, techniques from modular arithmetic and facts about the divisibility of Fibonacci and Lucas numbers are utilized. KEYWORDS: Fibonacci Sequence; Lucas Sequence; Modular Arithmetic; Divisibility Sequence


2021 ◽  
Vol 94 (2) ◽  
pp. 125-131
Author(s):  
Michael Z. Spivey
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document