scholarly journals Sums of powers of integers and hyperharmonic numbers

2021 ◽  
Vol 27 (2) ◽  
pp. 101-110
Author(s):  
José Luis Cereceda

In this paper, we obtain a new formula for the sums of k-th powers of the first n positive integers, Sk(n), that involves the hyperharmonic numbers and the Stirling numbers of the second kind. Then, using an explicit representation for the hyperharmonic numbers, we generalize this formula to the sums of powers of an arbitrary arithmetic progression. Furthermore, we express the Bernoulli polynomials in terms of hyperharmonic polynomials and Stirling numbers of the second kind. Finally, we extend the obtained formula for Sk(n) to negative values of n.

2020 ◽  
Vol 108 (122) ◽  
pp. 103-120
Author(s):  
Neslihan Kilar ◽  
Yilmaz Simsek

The formula for the sums of powers of positive integers, given by Faulhaber in 1631, is proven by using trigonometric identities and some properties of the Bernoulli polynomials. Using trigonometric functions identities and generating functions for some well-known special numbers and polynomials, many novel formulas and relations including alternating sums of powers of positive integers, the Bernoulli polynomials and numbers, the Euler polynomials and numbers, the Fubini numbers, the Stirling numbers, the tangent numbers are also given. Moreover, by applying the Riemann integral and p-adic integrals involving the fermionic p-adic integral and the Volkenborn integral, some new identities and combinatorial sums related to the aforementioned numbers and polynomials are derived. Furthermore, we serve up some revealing and historical remarks and observations on the results of this paper.


2017 ◽  
Vol 9 (5) ◽  
pp. 73
Author(s):  
Do Tan Si

We show that a sum of powers on an arithmetic progression is the transform of a monomial by a differential operator and that its generating function is simply related to that of the Bernoulli polynomials from which consequently it may be calculated. Besides, we show that it is obtainable also from the sums of powers of integers, i.e. from the Bernoulli numbers which in turn may be calculated by a simple algorithm.By the way, for didactic purpose, operator calculus is utilized for proving in a concise manner the main properties of the Bernoulli polynomials. 


2018 ◽  
Vol 10 (2) ◽  
pp. 5
Author(s):  
Do Tan Si

We prove that all the Faulhaber coefficients of a sum of odd power of elements of an arithmetic progression may simply be calculated from only one of them which is easily calculable from two Bernoulli polynomials as so as from power sums of integers. This gives two simple formulae for calculating them. As for sums related to even powers, they may be calculated simply from those related to the nearest odd one’s.


2016 ◽  
Vol 100 (548) ◽  
pp. 233-238
Author(s):  
José Luis Cereceda

The sums of powers of the first n positive integers Sp(n) = 1p + 2p + …+np, (p = 0, 1, 2, … )satisfy the fundamental identity(1)from which we can successively compute S0 (n), S1 (n), S2 (n), etc. Identity (1) can easily be proved by using the binomial theorem; see e.g. [1, 2]. Several variations of (1) are also well known [3, 4, 5].In this note, we derive the following lesser-known recursive formula for Sp (n):(2)where denote the (unsigned) Stirling numbers of the first kind, also known as the Stirling cycle numbers (see e.g. [6, Chapter 6]). Table 1 shows the first few rows of the Stirling number triangle. Although the recursive formula (2) is by no means new, our purpose in dealing with recurrence (2) in this note is two-fold. On one hand, we aim to provide a new algebraic proof of (2) by making use of two related identities involving the harmonic numbers.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 281
Author(s):  
Ghulam Muhiuddin ◽  
Waseem Ahmad Khan ◽  
Ugur Duran

In the present work, a new extension of the two-variable Fubini polynomials is introduced by means of the polyexponential function, which is called the two-variable type 2 poly-Fubini polynomials. Then, some useful relations including the Stirling numbers of the second and the first kinds, the usual Fubini polynomials, and the higher-order Bernoulli polynomials are derived. Also, some summation formulas and an integral representation for type 2 poly-Fubini polynomials are investigated. Moreover, two-variable unipoly-Fubini polynomials are introduced utilizing the unipoly function, and diverse properties involving integral and derivative properties are attained. Furthermore, some relationships covering the two-variable unipoly-Fubini polynomials, the Stirling numbers of the second and the first kinds, and the Daehee polynomials are acquired.


2009 ◽  
Vol 05 (04) ◽  
pp. 625-634
Author(s):  
SERGEI V. KONYAGIN ◽  
MELVYN B. NATHANSON

Consider the congruence class Rm(a) = {a + im : i ∈ Z} and the infinite arithmetic progression Pm(a) = {a + im : i ∈ N0}. For positive integers a,b,c,d,m the sum of products set Rm(a)Rm(b) + Rm(c)Rm(d) consists of all integers of the form (a+im) · (b+jm)+(c+km)(d+ℓm) for some i,j,k,ℓ ∈ Z. It is proved that if gcd (a,b,c,d,m) = 1, then Rm(a)Rm(b) + Rm(c)Rm(d) is equal to the congruence class Rm(ab+cd), and that the sum of products set Pm(a)Pm(b)+Pm(c)Pm eventually coincides with the infinite arithmetic progression Pm(ab+cd).


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Tamás Lengyel

International audience Let $n$ and $k$ be positive integers, $d(k)$ and $\nu_2(k)$ denote the number of ones in the binary representation of $k$ and the highest power of two dividing $k$, respectively. De Wannemacker recently proved for the Stirling numbers of the second kind that $\nu_2(S(2^n,k))=d(k)-1, 1\leq k \leq 2^n$. Here we prove that $\nu_2(S(c2^n,k))=d(k)-1, 1\leq k \leq 2^n$, for any positive integer $c$. We improve and extend this statement in some special cases. For the difference, we obtain lower bounds on $\nu_2(S(c2^{n+1}+u,k)-S(c2^n+u,k))$ for any nonnegative integer $u$, make a conjecture on the exact order and, for $u=0$, prove part of it when $k \leq 6$, or $k \geq 5$ and $d(k) \leq 2$. The proofs rely on congruential identities for power series and polynomials related to the Stirling numbers and Bell polynomials, and some divisibility properties.


Author(s):  
Nur Inayah

AbstractA decomposition of a graph P into a family Q consisting of isomorphic copies of a graph Q is (a,b)-Q-antimagic if there is a bijection φ:V(P)∪E(P)→{1,2,3,4…,v_P+e_P} such that for all subgraphs Q’ isomorphic to Q,   the Q-weightsφ(Q’ )=∑_(v∈V(Q^' ))▒φ(v) + ∑_(e∈E(Q^'))▒〖φ(e)〗constitute an arithmetic progression a,a + b,a + 2b,…,a + (r - 1)b where a and b are positive integers and r is the number of subgraphs of P isomorphic to Q. In this article, we prove the existence of a (a,b)-P_4-antimagic  decomposition of a generalized Peterzen graph GPz(n,3) for several values of b.Keywords: covering; decomposition; antimagic; generalized Peterzen. AbstrakSuatu dekomposisi dari suatu graf P ke dalam suatu famili Q yang terdiri dari salinan isomorfik dari graf Q dikatakan (a,b)-Q-antiajaib jika terdapat pemetaaan bijektif φ:V(P)∪E(P)→{1,2,3,4…,v_P+e_P} sedemikian sehingga semua subgraf Q’ yang isomorfik ke Q, dengan bobot-Q sebagai berikutφ(Q’ )=∑_(v∈V(Q^' ))▒φ(v) + ∑_(e∈E(Q^'))▒〖φ(e)〗yang membentuk suatu barisan aritmatika yaitu a,a + b,a + 2b,…,a + (r - 1)b dengan a dan b adalah bilangan bulat positif dan r adalah banyaknya subgraf dari P yang isomorfik ke Q. Pada artikel ini, kami membuktikan eksistensi (a,b)-P_4-antiajaib dekomposisi dari graf generalized Peterzen GPz(n,3) untuk beberapa nilai b.Kata kunci: selimut; dekomposisi; antiajaib; generalized Peterzen.


Sign in / Sign up

Export Citation Format

Share Document