robin boundary condition
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 45)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Vol 13 (2) ◽  
pp. 321-335
Author(s):  
Hassan Belaouidel ◽  
Anass Ourraoui ◽  
Najib Tsouli

Abstract This paper is concerned with the existence and multiplicity of solutions for p(x)-Laplacian equations with Robin boundary condition. Our technical approach is based on variational methods.


2021 ◽  
Author(s):  
Ruanui Nicholson ◽  
Matti Niskanen

Abstract We consider the problem of simultaneously inferring the heterogeneous coefficient field for a Robin boundary condition on an inaccessible part of the boundary along with the shape of the boundary for the Poisson problem. Such a problem arises in, for example, corrosion detection, and thermal parameter estimation. We carry out both linearised uncertainty quantification, based on a local Gaussian approximation, and full exploration of the joint posterior using Markov chain Monte Carlo (MCMC) sampling. By exploiting a known invariance property of the Poisson problem, we are able to circumvent the need to re-mesh as the shape of the boundary changes. The linearised uncertainty analysis presented here relies on a local linearisation of the parameter-to-observable map, with respect to both the Robin coefficient and the boundary shape, evaluated at the maximum a posteriori (MAP) estimates. Computation of the MAP estimate is carried out using the Gauss-Newton method. On the other hand, to explore the full joint posterior we use the Metropolis-adjusted Langevin algorithm (MALA), which requires the gradient of the log-posterior. We thus derive both the Fréchet derivative of the solution to the Poisson problem with respect to the Robin coefficient and the boundary shape, and the gradient of the log-posterior, which is efficiently computed using the so-called adjoint approach. The performance of the approach is demonstrated via several numerical experiments with simulated data.


2021 ◽  
Vol 918 ◽  
Author(s):  
Thibaut T. Clarté ◽  
Nathanaël Schaeffer ◽  
Stéphane Labrosse ◽  
Jérémie Vidal

Abstract


Sign in / Sign up

Export Citation Format

Share Document