hydrogen bonding networks
Recently Published Documents





Jan Henrik Halz ◽  
Andreas Hentsch ◽  
Christoph Wagner ◽  
Kurt Merzweiler

Treatment of 3-formylacetylacetone with the isomeric o-, m- and p-aminobenzoic acids led to the formation of the corresponding Schiff bases, namely, 3-[(2-carboxyphenylamino)methylidene]pentane-2,4-dione, 1, 3-[(3-carboxyphenylamino)methylidene]pentane-2,4-dione, 2, and 3-[(4-carboxyphenylamino)methylidene]pentane-2,4-dione, 3, all C13H13NO4, that contain a planar amino-methylene-pentane-2,4-dione core with a strong intramolecular N—H...O hydrogen bridge. The carboxyphenyl groups attached to the nitrogen atom are almost coplanar to the central molecular fragment. Depending on the position of the carboxyl unit, different supramolecular structures with hydrogen-bonding networks are formed in the three title structures.

Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1882
Wei Xia ◽  
Yingguo Bai ◽  
Pengjun Shi

Improving the substrate affinity and catalytic efficiency of β-glucosidase is necessary for better performance in the enzymatic saccharification of cellulosic biomass because of its ability to prevent cellobiose inhibition on cellulases. Bgl3A from Talaromyces leycettanus JCM12802, identified in our previous work, was considered a suitable candidate enzyme for efficient cellulose saccharification with higher catalytic efficiency on the natural substrate cellobiose compared with other β-glucosidase but showed insufficient substrate affinity. In this work, hydrophobic stacking interaction and hydrogen-bonding networks in the active center of Bgl3A were analyzed and rationally designed to strengthen substrate binding. Three vital residues, Met36, Phe66, and Glu168, which were supposed to influence substrate binding by stabilizing adjacent binding site, were chosen for mutagenesis. The results indicated that strengthening the hydrophobic interaction between stacking aromatic residue and the substrate, and stabilizing the hydrogen-bonding networks in the binding pocket could contribute to the stabilized substrate combination. Four dominant mutants, M36E, M36N, F66Y, and E168Q with significantly lower Km values and 1.4–2.3-fold catalytic efficiencies, were obtained. These findings may provide a valuable reference for the design of other β-glucosidases and even glycoside hydrolases.

2021 ◽  
Vol 9 ◽  
S. S. Yu ◽  
C. Y. Xu ◽  
X. Pan ◽  
X. Q. Pan ◽  
H. B. Duan ◽  

Chair 3D Co(II) phosphite frameworks have been prepared by the ionothermal method. It belongs to chiral space group P3221, and the whole framework can be topologically represented as a chiral 4-connected qtz net. It shows a multistep dielectric response arising from the reorientation of Me2-DABCO in the chiral cavities. It can also serve as a pron conductor with high conductivity, 1.71 × 10−3 S cm−1, at room temperature, which is attributed to the formation of denser hydrogen-bonding networks providing efficient proton-transfer pathways.

2021 ◽  
Tuong Anh To ◽  
Chao Pei ◽  
Rene Koenigs ◽  
Thanh Vinh Nguyen

Synthetic chemists have learned to mimic nature in using hydrogen bonds and other weak interactions to dictate the spatial arrangement of reaction substrates and to stabilize transition states to enable highly efficient and selective reactions. The activation of a catalyst molecule itself by hydrogen bonding networks, in order to enhance its catalytic activity to achieve a desired reaction outcome, is less explored in organic synthesis, despite being a commonly found phenomenon in nature. Herein, we show our investigation into this underexplored area by studying the promotion of carbonyl-olefin metathesis reactions by hydrogen bonding-assisted Brønsted acid catalysis, using hexafluoroisopropanol (HFIP) solvent in combination with para-toluenesulfonic acid (pTSA). Our experimental and computational mechanistic studies reveal not only an interesting role of HFIP solvent in assisting pTSA Brønsted acid catalyst, but also insightful knowledge about the current limitations of the carbonyl-olefin metathesis reaction.

2021 ◽  
Vol 77 (10) ◽  
pp. 615-620
Duyen N. K. Pham ◽  
Zachary S. Belanger ◽  
Andrew R. Chadeayne ◽  
James A. Golen ◽  
David R. Manke

The crystal structures of the hydrochloride salts of nine substituted tryptamines, namely, 1-methyltryptammonium chloride, C11H15N2 +·Cl−, (1), 2-methyl-1-phenyltryptammonium chloride, C17H19N2 +·Cl−, (2), 5-methoxytryptammonium chloride, C11H15N2O+·Cl−, (3), 5-bromotryptammonium chloride, C10H12BrN2 +·Cl−, (4), 5-chlorotryptammonium chloride, C10H12ClN2 +·Cl−, (5), 5-fluorotryptammonium chloride, C10H12FN2 +·Cl−, (6), 5-methyltryptammonium chloride, C11H15N2 +·Cl−, (7), 6-fluorotryptammonium chloride, C10H12FN2 +·Cl−, (8), and 7-methyltryptammonium chloride, C11H15N2 +·Cl−, (9), are reported. The seven tryptamines with N—H indoles, (3)–(9), show very similar structures, with N—H...Cl hydrogen-bonding networks forming two-dimensional sheets in the crystals. These sheets are combinations of R 4 2(8) and R 4 2(18) rings, and C 2 1(4) and C 2 1(9) chains. Substitution at the indole N atom reduces the dimensionality of the hydrogen-bonding network, with compounds (1) and (2) demonstrating one-dimensional chains that are a combination of different rings and parallel chains.

Sign in / Sign up

Export Citation Format

Share Document