constant dimension codes
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 13)

H-INDEX

7
(FIVE YEARS 1)

2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Sascha Kurz

<p style='text-indent:20px;'>A basic problem for constant dimension codes is to determine the maximum possible size <inline-formula><tex-math id="M1">\begin{document}$ A_q(n,d;k) $\end{document}</tex-math></inline-formula> of a set of <inline-formula><tex-math id="M2">\begin{document}$ k $\end{document}</tex-math></inline-formula>-dimensional subspaces in <inline-formula><tex-math id="M3">\begin{document}$ \mathbb{F}_q^n $\end{document}</tex-math></inline-formula>, called codewords, such that the subspace distance satisfies <inline-formula><tex-math id="M4">\begin{document}$ d_S(U,W): = 2k-2\dim(U\cap W)\ge d $\end{document}</tex-math></inline-formula> for all pairs of different codewords <inline-formula><tex-math id="M5">\begin{document}$ U $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M6">\begin{document}$ W $\end{document}</tex-math></inline-formula>. Constant dimension codes have applications in e.g. random linear network coding, cryptography, and distributed storage. Bounds for <inline-formula><tex-math id="M7">\begin{document}$ A_q(n,d;k) $\end{document}</tex-math></inline-formula> are the topic of many recent research papers. Providing a general framework we survey many of the latest constructions and show the potential for further improvements. As examples we give improved constructions for the cases <inline-formula><tex-math id="M8">\begin{document}$ A_q(10,4;5) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M9">\begin{document}$ A_q(11,4;4) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M10">\begin{document}$ A_q(12,6;6) $\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id="M11">\begin{document}$ A_q(15,4;4) $\end{document}</tex-math></inline-formula>. We also derive general upper bounds for subcodes arising in those constructions.</p>


2021 ◽  
Vol 621 ◽  
pp. 193-213
Author(s):  
Lisa Hernandez Lucas ◽  
Ivan Landjev ◽  
Leo Storme ◽  
Peter Vandendriessche

2021 ◽  
pp. 253-262
Author(s):  
Kunxiao Zhou ◽  
Yindong Chen ◽  
Zusheng Zhang ◽  
Feng Shi ◽  
Xianmang He

Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2234
Author(s):  
Clementa Alonso-González ◽  
Miguel Ángel Navarro-Pérez

In this paper we study flag codes on Fqn, being Fq the finite field with q elements. Special attention is given to the connection between the parameters and properties of a flag code and the ones of a family of constant dimension codes naturally associated to it (the projected codes). More precisely, we focus on consistent flag codes, that is, flag codes whose distance and size are completely determined by their projected codes. We explore some aspects of this family of codes and present examples of them by generalizing the concepts of equidistant and sunflower subspace code to the flag codes setting. Finally, we present a decoding algorithm for consistent flag codes that fully exploits the consistency condition.


2020 ◽  
Vol 66 (11) ◽  
pp. 6884-6897
Author(s):  
Shuangqing Liu ◽  
Yanxun Chang ◽  
Tao Feng

2020 ◽  
Vol 24 (9) ◽  
pp. 1875-1879
Author(s):  
Xianmang He ◽  
Yindong Chen ◽  
Zusheng Zhang

Sign in / Sign up

Export Citation Format

Share Document