scholarly journals The interplay of different metrics for the construction of constant dimension codes

2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Sascha Kurz

<p style='text-indent:20px;'>A basic problem for constant dimension codes is to determine the maximum possible size <inline-formula><tex-math id="M1">\begin{document}$ A_q(n,d;k) $\end{document}</tex-math></inline-formula> of a set of <inline-formula><tex-math id="M2">\begin{document}$ k $\end{document}</tex-math></inline-formula>-dimensional subspaces in <inline-formula><tex-math id="M3">\begin{document}$ \mathbb{F}_q^n $\end{document}</tex-math></inline-formula>, called codewords, such that the subspace distance satisfies <inline-formula><tex-math id="M4">\begin{document}$ d_S(U,W): = 2k-2\dim(U\cap W)\ge d $\end{document}</tex-math></inline-formula> for all pairs of different codewords <inline-formula><tex-math id="M5">\begin{document}$ U $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M6">\begin{document}$ W $\end{document}</tex-math></inline-formula>. Constant dimension codes have applications in e.g. random linear network coding, cryptography, and distributed storage. Bounds for <inline-formula><tex-math id="M7">\begin{document}$ A_q(n,d;k) $\end{document}</tex-math></inline-formula> are the topic of many recent research papers. Providing a general framework we survey many of the latest constructions and show the potential for further improvements. As examples we give improved constructions for the cases <inline-formula><tex-math id="M8">\begin{document}$ A_q(10,4;5) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M9">\begin{document}$ A_q(11,4;4) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M10">\begin{document}$ A_q(12,6;6) $\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id="M11">\begin{document}$ A_q(15,4;4) $\end{document}</tex-math></inline-formula>. We also derive general upper bounds for subcodes arising in those constructions.</p>

10.37236/8188 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Thomas Honold ◽  
Michael Kiermaier ◽  
Sascha Kurz

Subspace codes, i.e., sets of subspaces of $\mathbb{F}_q^v$, are applied in random linear network coding. Here we give improved upper bounds for their cardinalities based on the Johnson bound for constant dimension codes.


2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Juha Partala

A distributed storage system (DSS) is a fundamental building block in many distributed applications. It applies linear network coding to achieve an optimal tradeoff between storage and repair bandwidth when node failures occur. Additively homomorphic encryption is compatible with linear network coding. The homomorphic property ensures that a linear combination of ciphertext messages decrypts to the same linear combination of the corresponding plaintext messages. In this paper, we construct a linearly homomorphic symmetric encryption scheme that is designed for a DSS. Our proposal provides simultaneous encryption and error correction by applying linear error correcting codes. We show its IND-CPA security for a limited number of messages based on binary Goppa codes and the following assumption: when dividing a scrambled generator matrix G^ into two parts G1^ and G2^, it is infeasible to distinguish G2^ from random and to find a statistical connection between G1^ and G2^. Our infeasibility assumptions are closely related to those underlying the McEliece public key cryptosystem but are considerably weaker. We believe that the proposed problem has independent cryptographic interest.


2016 ◽  
Vol 18 (6) ◽  
pp. 1149-1162 ◽  
Author(s):  
Jin Wang ◽  
Jianping Wang ◽  
Kejie Lu ◽  
Yi Qian ◽  
Naijie Gu

Sign in / Sign up

Export Citation Format

Share Document