concave minimization problem
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 0)

H-INDEX

0
(FIVE YEARS 0)

2018 ◽  
Vol 7 (2.12) ◽  
pp. 333
Author(s):  
Se Ho Oh

This paper presents a branch-and-bound algorithm for solving the concave minimization problems with upper bounded variables. The algorithm uses simplex to construct the branching and the bounding procedure. The linear convex envelope (the objective function of the subproblem) is uniquely determined on the candidate simplex which contains the subset of the local minimal points. The optimal solution of the subproblem is a local optimum of the original concave problem and used in reducing the list of active subproblems. The branching process splits the candidate simplex into two subsimplices by fixing the selected branching variable at value 0 or upper bound. Then the subsimplices are one less dimensional than the candidate. It means that the size of the subproblems gradually decreases. Further research needs to be focused on the efficient determination method of the simplex. The algorithm of this paper can be applied to solving the concave minimization problems under knapsack type constraints. 


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Lei Li ◽  
Hao Jin ◽  
Zhipeng Yan ◽  
Changqing Yang ◽  
Yong Wu

Redesigning user association strategies to improve energy efficiency (EE) has been viewed as one of the promising shifting paradigms for the fifth generation (5G) cellular networks. In this paper, we investigate how to optimize users’ association to enhance EE for hyper dense heterogeneous networking in the 5G cellular networks, where the low-power node (LPN) much outnumbers the high-power node (HPN). To characterize that densely deployed LPNs would undertake a majority of high-rate services, while HPNs mainly support coverage; the EE metric is defined as average weighted EE of access nodes with the unit of bit per joule. Then, the EE optimization objective function is formulated and proved to be nonconvex. Two mathematical transformation techniques are presented to solve the nonconvex problem. In the first case, the original problem is reformulated as an equivalent problem involving the maximization of a biconcave function. In the second case, it is equivalent to a concave minimization problem. We focus on the solution of the biconcave framework, and, by exploiting the biconcave structure, a novel iterative algorithm based on dual theory is proposed, where a partially optimal solution can be achieved. Simulation results have verified the effectiveness of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document