canonical bijection
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 0)

2019 ◽  
pp. 185-194
Author(s):  
Richard Evan Schwartz

This chapter proves the Quasi-Isomorphism Theorem modulo two technical lemmas, which will be dealt with in the next two chapters. Section 18.2 introduces the affine transformation TA from the Quasi-Isomorphism Theorem. Section 18.3 defines the graph grid GA = TA(Z2) and states the Grid Geometry Lemma, a result about the basic geometric properties of GA. Section 18.4 introduces the set Z* that appears in the Renormalization Theorem and states the main result about it, the Intertwining Lemma. Section 18.5 explains how the Orbit Equivalence Theorem sets up a canonical bijection between the nontrivial orbits of the plaid PET and the orbits of the graph PET. Section 18.6 reinterprets the orbit correspondence in terms of the plaid polygons and the arithmetic graph polygons. Everything is then put together to complete the proof of the Quasi-Isomorphism Theorem. Section 18.7 deduces the Projection Theorem (Theorem 0.2) from the Quasi-Isomorphism Theorem.


2018 ◽  
Vol 85 (3-4) ◽  
pp. 356
Author(s):  
Paula Kemp ◽  
Louis J. Ratliff, Jr. ◽  
Kishor Shah

<p>It is shown that, for all local rings (R,M), there is a canonical bijection between the set <em>DO(R)</em> of depth one minimal prime ideals ω in the completion <em><sup>^</sup>R</em> of <em>R</em> and the set <em>HO(R/Z)</em> of height one maximal ideals <em>̅M'</em> in the integral closure <em>(R/Z)'</em> of <em>R/Z</em>, where <em>Z </em>:<em>= Rad(R)</em>. Moreover, for the finite sets <strong>D</strong> := {<em>V*/V* </em>:<em>= (<sup>^</sup>R/ω)'</em>, ω ∈ DO(R)} and H := {<em>V/V := (R/Z)'<sub><em>̅M'</em></sub>, <em>̅M'</em> ∈ HO(R/Z)</em>}:</p><p>(a) The elements in <strong>D</strong> and <strong>H</strong> are discrete Noetherian valuation rings.</p><p>(b) <strong>D</strong> = {<em><sup>^</sup>V</em> ∈ <strong>H</strong>}.</p>


10.37236/7124 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Stefan David ◽  
Hunter Spink ◽  
Marius Tiba

We ask if there exists a symmetric chain decomposition of the cuboid $Q_k \times n$ such that no chain is taut, i.e. no chain has a subchain of the form $(a_1,\ldots, a_k,0)\prec \cdots\prec (a_1,\ldots,a_k,n-1)$. In this paper, we show this is true precisely when $k \ge 5$ and $n\ge 3$. This question arises naturally when considering products of symmetric chain decompositions which induce orthogonal chain decompositions — the existence of the decompositions provided in this paper unexpectedly resolves the most difficult case of previous work by the second author on almost orthogonal symmetric chain decompositions (2017), making progress on a conjecture of Shearer and Kleitman (1979). In general, we show that for a finite graded poset $P$, there exists a canonical bijection between symmetric chain decompositions of $P \times m$ and $P \times n$ for $m, n\ge rk(P) + 1$, that preserves the existence of taut chains. If $P$ has a unique maximal and minimal element, then we also produce a canonical $(rk(P) +1)$ to $1$ surjection from symmetric chain decompositions of $P \times (rk(P) + 1)$ to symmetric chain decompositions of $P \times rk(P)$ which sends decompositions with taut chains to decompositions with taut chains.


2008 ◽  
Vol 19 (04) ◽  
pp. 387-420 ◽  
Author(s):  
GEORGE H. HITCHING

The moduli space [Formula: see text] of rank four semistable symplectic vector bundles over a curve X of genus two is an irreducible projective variety of dimension ten. Its Picard group is generated by the determinantal line bundle Ξ. The base locus of the linear system |Ξ| consists of precisely those bundles without theta divisors, that is, admitting nonzero maps from every line bundle of degree -1 over X. We show that this base locus consists of six distinct points, which are in canonical bijection with the Weierstrass points of the curve. We relate our construction of these bundles to another of Raynaud and Beauville using Fourier–Mukai transforms. As an application, we prove that the map sending a symplectic vector bundle to its theta divisor is a surjective map from [Formula: see text] to the space of even 4Θ divisors on the Jacobian variety of the curve.


Sign in / Sign up

Export Citation Format

Share Document