cleavage nucleus
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 0)

H-INDEX

0
(FIVE YEARS 0)

Genetics ◽  
1986 ◽  
Vol 112 (2) ◽  
pp. 237-248
Author(s):  
Yoshiaki Fuyama

ABSTRACT Sperm that are produced by males homozygous for ms(3)K81, a male sterile mutant of Drosophila melanogaster, are defective in syngamy but are capable of activating eggs to develop gynogenetically. The activated eggs usually produce haploid embryos, but a small fraction (10-4-10-5) of them give rise to diploid impaternate adults. To know the cytological mechanisms by which these impaternates restore diploidy, the genotypes of impaternate progeny obtained from females doubly heterozygous for visible markers were examined. The results show that, as generally found among parthenogenetic Drosophila, diploidy is restored after completing meiosis either by pronuclear fusion or by gamete duplication (doubling of a haploid cleavage nucleus). The fusion of two nonsister nuclei following meiosis II (central fusion) was indicated to be a predominant mode of diploidization in this species. Two meiotic mutants, mei-9 and mei-S332, which are known to greatly increase meiotic nondisjunction, did not cause an increased incidence of impaternates. This seems to exclude the possibility that some impaternates might have been derived from diploid egg nuclei produced through nondisjunction.


1936 ◽  
Vol s2-78 (311) ◽  
pp. 487-511
Author(s):  
A. J. THOMAS

1. The maturation of the egg takes place in the ovarian tube, and is immediately followed by the formation of the cleavagenucleus and its division into many nuclei. 2. The entire products of the cleavage-nucleus migrate to the surface to form the blastoderm. Cleavage of the yolk was not observed even in late stages. Yolk-cells are absent when the blastoderm is being formed. 3. Primitive endodermal cells are proliferated from the middle of the germ-band, and form a membrane between the germ-band and the yolk. The membrane is present only in embryonic stages; some of the cells proliferated wander into the yolk and act as vitellophags. 4. Mesoderm is formed by proliferation of cells from the ventral plate. It is preceded by the formation of a shallow gastrular furrow, and from the bottom of this furrow proliferation takes place. The mesoderm becomes arranged in segmental masses. 5. Two masses of cells proliferated at the anterior and posterior ends of the germ-band are shown to be the endodermal rudiments from which the mid-gut epithelium is formed. The invaginations of the stomodaeum and proctodaeum grow against these masses and carry parts of the proliferating areas near their blind ends. It is shown that the various methods of mid-gut formation which have been described could be reconciled with the process described in Carausius. 6. The hinder end of the mid-gut is flanked by two plates of ectoderm which are forward extensions of the proctodaeum. Into these extensions the Malpighian tubules open, and, as their histology is identical with that of these extensions and widely different from that of the mid-gut, these tubules must be ectodermal in nature. 7. The formation of the amnion and serosa are described.


Sign in / Sign up

Export Citation Format

Share Document