endodermal cells
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 35)

H-INDEX

30
(FIVE YEARS 3)

2022 ◽  
Vol 12 (1) ◽  
pp. 83
Author(s):  
Gina Gheorghe ◽  
Camelia Cristina Diaconu ◽  
Vlad Ionescu ◽  
Gabriel Constantinescu ◽  
Nicolae Bacalbasa ◽  
...  

Pancreatic cancer is one of the most aggressive malignant neoplastic diseases. The incidence and mortality rates of this disease vary depending on geographical area, which might be explained by the different exposure to risk factors. To improve the prognosis of patients with pancreatic cancer, different approaches are needed for an earlier diagnosis. Identification of risk factors and implementation of screening strategies are essential for a better prognosis. Currently, the risk factors for pancreatic cancer fall into two broad categories, namely extrinsic and intrinsic factors. Extrinsic factors include alcohol consumption, smoking, a diet rich in saturated fats, and viral infections such as chronic infection with hepatitis B and C viruses. The pathophysiological mechanisms explaining how these hepatotropic viruses contribute to the development of pancreatic cancer are not fully elucidated. The common origin of hepatocytes and pancreatic cells in the multipotent endodermal cells, the common origin of the blood vessels and biliary ducts of the pancreas and the liver, or chronic inflammatory changes may be involved in this interaction. A careful monitoring of patients with viral liver infections may contribute to the early diagnosis of pancreatic cancer and improve the prognosis of these patients.


2021 ◽  
Author(s):  
Jwalit Nayak ◽  
Sidra Anwar ◽  
Priti Krishna ◽  
Zhonghua Chen ◽  
Jonathan Plett ◽  
...  

Heirloom golden tomato fruit varieties are highly nutritious as they accumulate tetra-cis-lycopene, which has a higher bioavailability and recognised health benefits in treating anti-inflammatory diseases compared to all-trans-lycopene isomers found in red tomatoes. We investigated if photoisomerization of tetra-cis-lycopene occurs in roots of the golden tangerine Micro-Tom variety (tangmic), and how this affects root to shoot biomass, mycorrhizal colonization, abscisic acid accumulation, and responses to drought. tangmic plants grown in soil under glasshouse conditions displayed a reduction in height, number of flowers, fruit yield, and root length compared to wild type (WT). Soil inoculation with Rhizophagus irregularis revealed fewer arbuscules and other fungal structures in the endodermal cells of roots in tangmic relative to WT. The roots of tangmic hyperaccumulated acyclic cis-carotenes, while only trace levels of xanthophylls and abscisic acid were detected. In response to a water deficit, leaves from the tangmic plants displayed a rapid decline in maximum quantum yield of photosystem II compared to WT, indicating a defective root to shoot signalling response to drought. The lack of xanthophylls biosynthesis in tangmic roots reduced abscisic acid levels, thereby likely impairing endomycorrhiza colonisation and drought-induced root to shoot signalling.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana R. López-Pérez ◽  
Piotr J. Balwierz ◽  
Boris Lenhard ◽  
Ferenc Muller ◽  
Fiona C. Wardle ◽  
...  

AbstractRetinoic acid (RA) is a key signal for the specification of the pancreas. Still, the gene regulatory cascade triggered by RA in the endoderm remains poorly characterized. In this study, we investigated this regulatory network in zebrafish by combining RNA-seq, RAR ChIP-seq and ATAC-seq assays. By analysing the effect of RA and of the RA receptor (RAR) inverse-agonist BMS493 on the transcriptome and on the chromatin accessibility of endodermal cells, we identified a large set of genes and regulatory regions regulated by RA signalling. RAR ChIP-seq further defined the direct RAR target genes in zebrafish, including hox genes as well as several pancreatic regulators like mnx1, insm1b, hnf1ba and gata6. Comparison of zebrafish and murine RAR ChIP-seq data highlighted the conserved direct target genes and revealed that some RAR sites are under strong evolutionary constraints. Among them, a novel highly conserved RAR-induced enhancer was identified downstream of the HoxB locus and driving expression in the nervous system and in the gut in a RA-dependent manner. Finally, ATAC-seq data unveiled the role of the RAR-direct targets Hnf1ba and Gata6 in opening chromatin at many regulatory loci upon RA treatment.


2021 ◽  
Vol 220 (12) ◽  
Author(s):  
Bo Hu ◽  
Juan J. Rodriguez ◽  
Anurag Kakkerla Balaraju ◽  
Yuanyuan Gao ◽  
Nhan T. Nguyen ◽  
...  

Glypicans influence signaling pathways by regulating morphogen trafficking and reception. However, the underlying mechanisms in vertebrates are poorly understood. In zebrafish, Glypican 4 (Gpc4) is required for convergence and extension (C&E) of both the mesoderm and endoderm. Here, we show that transgenic expression of GFP-Gpc4 in the endoderm of gpc4 mutants rescued C&E defects in all germ layers. The rescue of mesoderm was likely mediated by Wnt5b and Wnt11f2 and depended on signaling filopodia rather than on cleavage of the Gpc4 GPI anchor. Gpc4 bound both Wnt5b and Wnt11f2 and regulated formation of the filopodia that transport Wnt5b and Wnt11f2 to neighboring cells. Moreover, this rescue was suppressed by blocking signaling filopodia that extend from endodermal cells. Thus, GFP-Gpc4–labeled protrusions that emanated from endodermal cells transported Wnt5b and Wnt11f2 to other germ layers, rescuing the C&E defects caused by a gpc4 deficiency. Our study reveals a new mechanism that could explain in vivo morphogen distribution involving Gpc4.


2021 ◽  
Vol 118 (39) ◽  
pp. e2101730118
Author(s):  
Vinay Shukla ◽  
Jian-Pu Han ◽  
Fabienne Cléard ◽  
Linnka Lefebvre-Legendre ◽  
Kay Gully ◽  
...  

Suberin is a hydrophobic biopolymer that can be deposited at the periphery of cells, forming protective barriers against biotic and abiotic stress. In roots, suberin forms lamellae at the periphery of endodermal cells where it plays crucial roles in the control of water and mineral transport. Suberin formation is highly regulated by developmental and environmental cues. However, the mechanisms controlling its spatiotemporal regulation are poorly understood. Here, we show that endodermal suberin is regulated independently by developmental and exogenous signals to fine-tune suberin deposition in roots. We found a set of four MYB transcription factors (MYB41, MYB53, MYB92, and MYB93), each of which is individually regulated by these two signals and is sufficient to promote endodermal suberin. Mutation of these four transcription factors simultaneously through genome editing leads to a dramatic reduction in suberin formation in response to both developmental and environmental signals. Most suberin mutants analyzed at physiological levels are also affected in another endodermal barrier made of lignin (Casparian strips) through a compensatory mechanism. Through the functional analysis of these four MYBs, we generated plants allowing unbiased investigation of endodermal suberin function, without accounting for confounding effects due to Casparian strip defects, and were able to unravel specific roles of suberin in nutrient homeostasis.


2021 ◽  
Vol 20 (2) ◽  
pp. 107-118
Author(s):  
Chimezie Ekeke ◽  
Chinedum Alozie Oagzie ◽  
Josephine Agogbua

Leaf and stem anatomical structure of the four Oldenlandia L. (O. affinis (Roem. & Schult.) DC., O. corymbosa L., O. herbacea (Linn.) Roxb., and O. lancifolia (Schumach) DC.) from some parts viz. Ogbokor (Edo State), Obiga-Asa (Abia State), IITA staion Onne (Rivers State), and Agricultural farm Uniport (Rivers State) Nigeria were examined by light microscopy. The epidermal cells are pentagonal to polygonal with straight, curved or wavy anticlinal walls, and paracytic stomata. All the species have dorsiventral leaf with the leaf vein vascular bundles embedded in the spongy mesophyll. The midribs vascular bundles form an arc enclosed by parenchymatous endodermal cells. O. herabcea is amphistomatic while the other species are hypostomatic. Raphide bundles were seen only in the lamina of O. corymbosa. Tuft hair is absent in O. herbacea but occurred on the adaxial leaf surfaces of O. affinis, O. corymbosa, and O. diffusa. The stem of O. diffusa is terete while other species have quadrangular stem. Papillae occurred on the adaxial epidermis of O. affinis and O. corymbosa. The stem pith thickness (PT)/cortical thickness (ET) ratio varied among the species. Notable diagnostic features in these species include the PT/ET ratio, layers of cortex in the stem, occurrence of tuft hairs on the leaf veins and surface, presence or absence of raphides and papillose, layer of abaxial and adaxial cortex in the midrib, and amphistomatatic or hypostomatic leaf.


2021 ◽  
Author(s):  
Ana R. López-Pérez ◽  
Piotr J. Balwierz ◽  
Boris Lenhard ◽  
Ferenc Muller ◽  
Fiona C. Wardle ◽  
...  

Abstract Retinoic acid (RA) is a key signal for the specification of the pancreas. Still, the gene regulatory cascade triggered by RA in the endoderm remains poorly characterized. In this study, we investigated this regulatory network in zebrafish by combining RNA-seq, RAR ChIP-seq and ATAC-seq assays. By analysing the effect of RA and of the RA receptor (RAR) antagonist BMS439 on the transcriptome and on the chromatin accessibility of endodermal cells, we identified a large set of genes and regulatory regions regulated by RA signalling. RAR ChIP-seq further defined the direct RAR target genes in zebrafish, including hox genes as well as several pancreatic regulators like mnx1, insm1b, hnf1ba and gata6. Comparison of zebrafish and murine RAR ChIP-seq data highlighted the conserved direct target genes and revealed that some RAR sites are under strong evolutionary constraints. Among them, a novel highly conserved RAR-induced enhancer was identified downstream of the HoxB locus and driving expression in the nervous system and in the gut in a RA-dependant manner. Finally, ATAC-seq data unveiled the role of the RAR-direct targets Hnf1ba and Gata6 in opening chromatin at many regulatory loci upon RA treatment.


Development ◽  
2021 ◽  
Author(s):  
Anurag Kakkerla Balaraju ◽  
Bo Hu ◽  
Juan J Rodriguez ◽  
Matthew Murry ◽  
Fang Lin

Non-canonical Wnt/Planar Cell Polarity (Wnt/PCP) signaling has been implicated in endoderm morphogenesis. However, the underlying cellular and molecular mechanisms of this process are unclear. We found that during convergence and extension (C&E) in zebrafish, gut endodermal cells are polarized mediolaterally, with GFP-Vangl2 enriched at the anterior edges. Endoderm cell polarity is lost, and intercalation is impaired, in the absence of glypican 4 (gpc4), a heparan-sulfate proteoglycan that promotes Wnt/PCP signaling, suggesting that this signaling is required for endodermal cell polarity. Live imaging revealed that endoderm C&E is accomplished by polarized cell protrusions and junction remodeling, which are impaired in gpc4-deficient endodermal cells. Furthermore, in the absence of gpc4, Cadherin 2 expression on the endodermal cell surface is increased due to impaired Rab5c-mediated endocytosis, which partially accounts for the endodermal defects in these mutants.These findings indicate that Gpc4 regulates endodermal planar cell polarity during endoderm C&E by influencing localization of Cadherin 2. Thus, our study uncovers a new mechanism by which Gpc4 regulates planar cell polarity and reveals the role of Wnt/PCP signaling in endoderm morphogenesis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Federica Marelli ◽  
Giuditta Rurale ◽  
Luca Persani

The mechanisms underlying thyroid gland development have a central interest in biology and this review is aimed to provide an update on the recent advancements on the early steps of thyroid differentiation that were obtained in the zebrafish, because this teleost fish revealed to be a suitable organism to study the early developmental stages. Physiologically, the thyroid precursors fate is delineated by the appearance among the endoderm cells of the foregut of a restricted cell population expressing specific transcription factors, including pax2a, nkx2.4b, and hhex. The committed thyroid primordium first appears as a thickening of the pharyngeal floor of the anterior endoderm, that subsequently detaches from the floor and migrates to its final location where it gives rise to the thyroid hormone-producing follicles. At variance with mammalian models, thyroid precursor differentiation in zebrafish occurs early during the developmental process before the dislocation to the eutopic positioning of thyroid follicles. Several pathways have been implicated in these early events and nowadays there is evidence of a complex crosstalk between intrinsic (coming from the endoderm and thyroid precursors) and extrinsic factors (coming from surrounding tissues, as the cardiac mesoderm) whose organization in time and space is probably required for the proper thyroid development. In particular, Notch, Shh, Fgf, Bmp, and Wnt signaling seems to be required for the commitment of endodermal cells to a thyroid fate at specific developmental windows of zebrafish embryo. Here, we summarize the recent findings produced in the various zebrafish experimental models with the aim to define a comprehensive picture of such complicated puzzle.


2021 ◽  
Vol 22 (11) ◽  
pp. 6002
Author(s):  
Zhigang Wang ◽  
Zhiwei Chen ◽  
Xiang Zhang ◽  
Qiuxing Wei ◽  
Yafeng Xin ◽  
...  

The Casparian strip domain protein 1 (OsCASP1) is necessary for the formation of the Casparian strip (CS) in the rice endodermis. It also controls Ca2+ transport to the stele. Here, we demonstrated that OsCASP1 overexpression enhanced Ca tolerance in rice. Under normal conditions, OsCASP1-overexpressed lines showed similar concentrations of essential metals in the roots and shoots compared to the wild type, while under high Ca conditions, Ca in the roots, shoots, and xylem sap of the OsCASP1-overexpressed lines was significantly decreased. This did not apply to other essential metals. Ca-inhibited growth was significantly alleviated in the OsCASP1-overexpressed lines. Furthermore, OsCASP1 overexpression resulted in earlier formation of both the CS and functional apoplastic barrier in the endodermis but did not induce ectopic CS formation in non-endodermal cell layers and affect suberin accumulation in the endodermis. These results indicate that the overexpression of OsCASP1 promotes CS formation in endodermal cells and inhibits Ca2+ transport by the apoplastic pathway, restricting Ca accumulation in the roots and shoots under high Ca conditions. Taken together, the results suggest that OsCASP1 overexpression is an effective way to improve rice adaptation to high Ca environments.


Sign in / Sign up

Export Citation Format

Share Document