malpighian tubules
Recently Published Documents


TOTAL DOCUMENTS

925
(FIVE YEARS 89)

H-INDEX

47
(FIVE YEARS 4)

2022 ◽  
Vol 12 ◽  
Author(s):  
Hye Jin Ko ◽  
Bharat Bhusan Patnaik ◽  
Ki Beom Park ◽  
Chang Eun Kim ◽  
Snigdha Baliarsingh ◽  
...  

The inhibitor of nuclear factor-kappa B (NF-κB) kinase (IKK) is the core regulator of the NF-κB pathway against pathogenic invasion in vertebrates or invertebrates. IKKβ, -ε and -γ have pivotal roles in the Toll and immune deficiency (IMD) pathways. In this study, a homolog of IKKε (TmIKKε) was identified from Tenebrio molitor RNA sequence database and functionally characterized for its role in regulating immune signaling pathways in insects. The TmIKKε gene is characterized by two exons and one intron comprising an open reading frame (ORF) of 2,196 bp that putatively encodes a polypeptide of 731 amino acid residues. TmIKKε contains a serine/threonine protein kinases catalytic domain. Phylogenetic analysis established the close homology of TmIKKε to Tribolium castaneum IKKε (TcIKKε) and its proximity with other IKK-related kinases. The expression of TmIKKε mRNA was elevated in the gut, integument, and hemocytes of the last-instar larva and the fat body, Malpighian tubules, and testis of 5-day-old adults. TmIKKε expression was significantly induced by Escherichia coli, Staphylococcus aureus, and Candida albicans challenge in whole larvae and tissues, such as hemocytes, gut, and fat body. The knockdown of the TmIKKε messenger RNA (mRNA) expression significantly reduced the survival of the larvae against microbial challenges. Further, we investigated the induction patterns of 14 T. molitor antimicrobial peptides (AMPs) genes in TmIKKε gene-silencing model after microbial challenges. While in hemocytes, the transcriptional regulation of most AMPs was negatively regulated in the gut and fat body tissue of T. molitor, AMPs, such as TmTenecin 1, TmTenecin 4, TmDefensin, TmColeoptericin A, TmColeoptericin B, TmAttacin 1a, and TmAttacin 2, were positively regulated in TmIKKε-silenced individuals after microbial challenge. Collectively, the results implicate TmIKKε as an important factor in antimicrobial innate immune responses in T. molitor.


2021 ◽  
Author(s):  
Bretta Hixson ◽  
Xiao-Li Bing ◽  
Xiaowei Yang ◽  
Alessandro Bonfini ◽  
Peter Nagy ◽  
...  

Mosquito vectors transmit numerous pathogens, but large gaps remain in our understanding of their physiology. To facilitate future explorations of mosquito biology, with specific attention to the major vector Aedes aegypti, we have created Aegypti-Atlas (http://aegyptiatlas.buchonlab.com/), an online resource hosting RNAseq profiles of Ae. aegypti body parts (head, thorax, abdomen, gut, Malpighian tubules, and ovaries), gut regions (crop, proventriculus, anterior and posterior midgut, and hindgut), and a time course of blood meal digestion in the gut. Using Aegypti-Atlas, we provide new insights into the regionalization of gut function, blood feeding response, and immune defenses. We find that the anterior and posterior regions of the mosquito midgut possess clearly delineated digestive specializations which are preserved in the blood-fed state. Blood feeding initiates the sequential transcriptional induction and repression/depletion of multiple cohorts of peptidases throughout blood meal digestion. With respect to defense, immune signaling components, but not recognition or effector molecules, show enrichment in ovaries. Basal expression of antimicrobial peptides is dominated by two genes, holotricin and gambicin, that are expressed in the carcass and the digestive tissues, respectively, in a near mutually exclusive manner. In the midgut, gambicin and other immune effector genes are almost exclusively expressed in the anterior regions, while the posterior midgut exhibits the hallmarks of immune tolerance. Finally, in a cross-species comparison between the midguts of Ae. aegypti and Anopheles gambiae, we observe that regional digestive and immune specializations are closely conserved, indicating that our data may yield inferences that are broadly relevant to multiple mosquito vector species. We further demonstrate that the expression of orthologous genes is highly correlated, with the exception of a ‘species signature’ comprising a small number of highly/disparately expressed genes. With this work, we show the potential of Aegypti-Atlas to unlock a more complete understanding of mosquito biology.


2021 ◽  
Vol 12 ◽  
Author(s):  
Maryam Ali Mohammadie Kojour ◽  
Tariku Tesfaye Edosa ◽  
Ho Am Jang ◽  
Maryam Keshavarz ◽  
Yong Hun Jo ◽  
...  

The dimeric cytokine ligand Spätzle (Spz) is responsible for Toll pathway activation and antimicrobial peptide (AMP) production upon pathogen challenge in Tenebrio molitor. Here, we indicated that TmSpz5 has a functional role in response to bacterial infections. We showed that the highest expression of TmSpz5 is induced by Candida albicans. However, TmSpz5 knockdown reduced larval survival against Escherichia coli and Staphylococcus aureus. To evaluate the molecular mechanism underlying the observed survival differences, the role of TmSpz5 in AMP production was examined by RNA interference and microbial injection. T. molitor AMPs that are active against Gram-negative and -positive bacteria, including Tmtenecins, Tmattacins, Tmcoleoptericins, Tmtaumatin-like-proteins, and Tmcecropin-2, were significantly downregulated by TmSpz-5 RNAi in the Malpighian tubules (MTs) following a challenge with E. coli and S. aureus. However, upon infection with C. albicans the mRNA levels of most AMPs in the dsTmSpz5-injected group were similar to those in the control groups. Likewise, the expression of the transcription factors NF-κB, TmDorX2, and TmRelish were noticeably suppressed in the MTs of TmSpz5-silenced larvae. Moreover, E. coli-infected TmSpz5 knockdown larvae showed decreased antimicrobial activity in the MTs and hindgut compared with the control group. These results demonstrate that TmSpz5 has a defined role in T. molitor innate immunity by regulating AMP expression in MTs in response to E. coli.


2021 ◽  
Author(s):  
Chenhui Wang ◽  
Allan C. Spradling

AbstractDrosophila renal stem cells (RSCs) contradict the common expectation that stem cells maintain tissue homeostasis. RSCs are abundant, quiescent and confined to the peri-ureter region of the kidney-like Malpighian tubules (MTs). Although derived during pupation like intestinal stem cells, RSCs initially remodel the larval MTs only near the intestinal junction. However, following adult injury to the ureter by xanthine stones, RSCs remodel the damaged region in a similar manner. Thus, RSCs represent stem cells encoding a developmental redesign. The remodeled tubules have a larger luminal diameter and shorter brush border, changes linked to enhanced stone resistance. However, RSC-mediated modifications also raise salt sensitivity and reduce fecundity. Our results suggest that RSCs arose by arresting developmental progenitors to preserve larval physiology until a time in adulthood when it becomes advantageous to complete development by RSC activation.One-Sentence SummaryActivated Drosophila renal stem cells rebuild the adult Malphigian tubules using a less efficient but more stone-resistant design.


Author(s):  
Saška Lipovšek ◽  
Tone Novak ◽  
Barbara Dariš ◽  
Ferdinand Hofer ◽  
Gerd Leitinger ◽  
...  
Keyword(s):  

2021 ◽  
Vol 9 (11) ◽  
pp. 2256
Author(s):  
Lucie Ticha ◽  
Barbora Kykalova ◽  
Jovana Sadlova ◽  
Marina Gramiccia ◽  
Luigi Gradoni ◽  
...  

Leishmania (Sauroleishmania) tarentolae is transmitted by reptile-biting sand flies of the genus Sergentomyia, but the role of Phlebotomus sand flies in circulation of this parasite is unknown. Here, we compared the development of L. (S.) tarentolae strains in three Phlebotomus species: P. papatasi, P. sergenti, and P. perniciosus. Laboratory-bred sand flies were membrane-fed on blood with parasite suspension and dissected on days 1 and 7 post blood meal. Parasites were measured on Giemsa-stained gut smears and five morphological forms were distinguished. In all parasite-vector combinations, promastigotes were found in Malpighian tubules, often in high numbers, which suggests that this tissue is a typical location for L. (S.) tarentolae development in sand flies. All three studied strains colonized the hindgut, but also migrated anteriorly to both parts of the midgut and colonized the stomodeal valve. Significant differences were demonstrated between sand fly species: highest infection rates, high parasite loads, and the most frequent anterior migration with colonization of the stomodeal valve were found in P. perniciosus, while all these parameters were lowest in P. sergenti. In conclusion, the peripylarian type of development was demonstrated for three L. (S.) tarentolae strains in three Phlebotomus sand flies. We suggest paying more attention to Phlebotomus species, particularly P. perniciosus and P. papatasi, as potential secondary vectors of Sauroleishmania.


Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 935
Author(s):  
Jie Zeng ◽  
Wei-Nan Kang ◽  
Lin Jin ◽  
Ahmad Ali Anjum ◽  
Guo-Qing Li

The vATPase holoenzyme consists of two functional subcomplexes, the cytoplasmic (peripheral) V1 and the membrane-embedded V0. Both V1 and V0 sectors contain eight subunits, with stoichiometry of A3B3CDE3FG3H in V1 and ac8c’c”def(Voa1p) in V0 respectively. However, the function of G subunit has not been characterized in any non-Drosophilid insect species. In the present paper, we uncovered that HvvATPaseG was actively transcribed from embryo to adult in a Coleopteran pest Henosepilachna vigintioctopunctata. Its mRNA levels peaked in larval hindgut and Malpighian tubules. RNA interference (RNAi)-mediated knockdown of HvvATPaseG significantly reduced larval feeding, affected chitin biosynthesis, destroyed midgut integrity, damaged midgut peritrophic membrane, and retarded larval growth. The function of Malpighian tubules was damaged, the contents of glucose, trehalose, lipid, total soluble amino acids and protein were lowered and the fat bodies were lessened in the HvvATPaseG RNAi larvae, compared with those in the PBS- and dsegfp-fed beetles. In contrast, the amount of glycogen was dramatically increased in the HvvATPaseG depletion ladybirds. As a result, the development was arrested, pupation was inhibited and adult emergence was impaired in the HvvATPaseG hypomorphs. Our results demonstrated that G subunit plays a critical role during larval development in H. vigintioctopunctata.


2021 ◽  
Vol 22 (19) ◽  
pp. 10888
Author(s):  
Ho Am Jang ◽  
Bharat Bhusan Patnaik ◽  
Maryam Ali Mohammadie Kojour ◽  
Bo Bae Kim ◽  
Young Min Bae ◽  
...  

The cystine knot protein Spätzle is a Toll receptor ligand that modulates the intracellular signaling cascade involved in the nuclear factor kappa B (NF-κB)-mediated regulation of antimicrobial peptide (AMP)-encoding genes. Spätzle-mediated activation of the Toll pathway is critical for the innate immune responses of insects against Gram-positive bacteria and fungi. In this study, the open reading frame (ORF) sequence of Spätzle-like from T. molitor (TmSpz-like) identified from the RNA sequencing dataset was cloned and sequenced. The 885-bp TmSpz-like ORF encoded a polypeptide of 294 amino acid residues. TmSpz-like comprised a cystine knot domain with six conserved cysteine residues that formed three disulfide bonds. Additionally, TmSpz-like exhibited the highest amino acid sequence similarity with T. castaneum Spätzle (TcSpz). In the phylogenetic tree, TmSpz-like and TcSpz were located within a single cluster. The expression of TmSpz-like was upregulated in the Malpighian tubules and gut tissues of T. molitor. Additionally, the expression of TmSpz-like in the whole body and gut of the larvae was upregulated at 24 h post-E. coli infection. The results of RNA interference experiments revealed that TmSpz-like is critical for the viability of E. coli-infected T. molitor larvae. Eleven AMP-encoding genes were downregulated in the E. coli-infected TmSpz-like knockdown larvae, which suggested that TmSpz-like positively regulated these genes. Additionally, the NF-κB-encoding genes (TmDorX1, TmDorX2, and TmRelish) were downregulated in the E. coli-infected TmSpz-like knockdown larvae. Thus, TmSpz-like plays a critical role in the regulation of AMP production in T. molitor in response to E. coli infection.


Zoology ◽  
2021 ◽  
pp. 125972
Author(s):  
Duncan Bell ◽  
Nic Bury ◽  
Svetlana Gretton ◽  
Nick Corps ◽  
David Mortimore ◽  
...  

2021 ◽  
Author(s):  
Jun Xu ◽  
Yifang Liu ◽  
Hongjie Li ◽  
Alexander J. Tarashansky ◽  
Colin H. Kalicki ◽  
...  

Like humans, insects rely on precise regulation of their internal environments to survive. The insect renal system consists of Malpighian tubules and nephrocytes that share similarities to the mammalian kidney. Studies of the Drosophila Malpighian tubules and nephrocytes have provided many insights into our understanding of the excretion of waste products, stem cell regeneration, protein reabsorption, and as human kidney disease models. Here, we analyzed single-nucleus RNA sequencing (snRNA-seq) data sets to characterize the cell types of the adult fly kidney. We identified 11 distinct clusters representing renal stem cells (RSCs), stellate cells (SCs), regionally specific principal cells (PCs), garland nephrocyte cells (GCs) and pericardial nephrocytes (PNs). Analyses of these clusters revealed many new interesting features. For example, we found a new, previously unrecognized cell cluster: lower segment PCs that express Esyt2. In addition, we find that the SC marker genes RhoGEF64c, Frq2, Prip and CG10939 regulate their unusual cell shape. Further, we identified transcription factors specific to each cluster and built a network of signaling pathways that are potentially involved in mediating cell-cell communication between Malpighian tubule cell types. Finally, cross-species analysis allowed us to match the fly kidney cell types to mouse kidney cell types and planarian protonephridia - knowledge that will help the generation of kidney disease models. To visualize this dataset, we provide a web-based resource for gene expression in single cells (https://www.flyrnai.org/scRNA/kidney/). Altogether, our study provides a comprehensive resource for addressing gene function in the fly kidney and future disease studies.


Sign in / Sign up

Export Citation Format

Share Document