identical diameter
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 0)

2019 ◽  
Vol 11 (02) ◽  
pp. 1950021
Author(s):  
A. Chellaram Malaravan ◽  
A. Wilson Baskar

The aim is to provide a necessary and sufficient condition under which both a graph and its complement have (a) identical radius, (b) identical diameter, (c) identical center, and (d) identical periphery.


Author(s):  
Stephen P. Arthur ◽  
Dara W. Childs

Rotordynamic and leakage data are presented for a see-through tooth-on-rotor (TOR) labyrinth seal with comparisons to a see-through tooth-on-stator (TOS) labyrinth seal. Measurements for both seals are also compared to predictions from XLLaby. Both seals have identical diameter and can be considered as relatively long labyrinth seals. The TOR seal has a length-to-diameter ratio of 0.62, whereas the TOS seal is longer and has a length-to-diameter ratio of 0.75. Both seals also differ by number of teeth, tooth height, and tooth cavity length. TOR labyrinth tests were carried out at an inlet pressure of 70 bar-a (1,015 psia), pressure ratios of 0.4, 0.5, and 0.6, rotor speeds up to 20,200 rpm, a radial clearance of 0.1 mm (4 mils), and three preswirl ratios. For comparison, TOS labyrinth tests were run at identical conditions as the TOR tests but for only one positive preswirl ratio. TOR labyrinth measurements show a pronounced dependence of rotordynamic coefficients on rotor speed, especially when compared to prior documented TOS labyrinth seal tests run at a radial clearance of 0.2 mm (8mils). The TOR labyrinth cross-coupled stiffness is higher in magnitude and increases at a higher rate than that of the TOS labyrinth across all test speeds. However, the TOR labyrinth effective damping was determined to be greater due to higher measurements of direct damping. Measured leakage rates for the TOR labyrinth were approximately 5–10% less than the TOS labyrinth. XLLaby underpredicted the rotordynamic coefficients for both seals. However, as with measurements, it predicted the TOR labyrinth to have higher effective damping than the TOS labyrinth.


1981 ◽  
Vol 103 (1) ◽  
pp. 107-111
Author(s):  
D. P. Updike

Elastic stress analysis of a right angle tee branch pipe connection of two pipes of identical diameter and thickness connected through 45-deg chamfer corner sections is developed for internal pressure loading. Stresses in the crotch portion of the vessel are determined. These results are presented in the form of a table of factors useful for rapid calculation of approximate values of the peak stresses. The existence of a structurally optimum size of chamfer is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document