diameter ratio
Recently Published Documents


TOTAL DOCUMENTS

1460
(FIVE YEARS 356)

H-INDEX

45
(FIVE YEARS 6)

Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 60
Author(s):  
Lihuan Chen ◽  
Muzheng Cheng ◽  
Yi Cai ◽  
Liwen Guo ◽  
Dianrong Gao

The technology of increasing coal seam permeability by high-pressure water jet has significant advantages in preventing and controlling gas disasters in low-permeability coal seam. The structural parameters of a nozzle are the key to its jet performance. The majority of the current studies take strike velocity as the evaluation index, and the influence of the interaction between the nozzle’s structural parameters on its jet performance is not fully considered. In practice, strike velocity and strike area will affect gas release in the process of coal breaking and punching. To further optimize the structural parameters of coal breaking and punching nozzle, and improve water jet performance, some crucial parameters such as the contraction angle, outlet divergence angle, and length-to-diameter ratio are selected. Meanwhile, the maximum X-axis velocity and effective Y-axis extension distance are used as evaluation indexes. The effect of each key factor on the water jet performance is analyzed by numerical simulation using the single factor method. The significance and importance effect of each factor and their interaction on the water jet performance are quantitatively analyzed using the orthogonal experiment method. Moreover, three optimal combinations are selected for experimental verification. Results show that with an increase in contraction angle, outlet divergence angle, and length-to-diameter ratio, the maximum X-axis velocity increases initially and decreases thereafter. The Y-direction expansion distance of the jet will be improved significantly with an increase in the outlet divergence angle. Through field experiments, the jet performance of the improved nozzle 3 is the best. After optimization, the coal breaking and punching diameter of the nozzle is increased by 118%, and the punching depth is increased by 17.46%.


Author(s):  
Siya Rimoy ◽  
Matias Silva ◽  
Richard J. Jardine

Uncertainties regarding the axial cyclic behaviour of piles driven in sands led to an extended programme of calibration chamber instrumented pile experiments. Broad trends are identified and interpreted with reference to normalised cyclic loading parameters Qcyclic/QT, Qmean/QT and N. Cyclic damage is shown to be related to changes in the radial effective stress regime close to the shaft. While stable loading leads to little or no change as cycling continues in the sand masses’ effective stress regime, high-level cyclic loading can affect stresses far out into the sand mass. The test systems’ chamber-to-pile diameter ratio has a significant impact on outcomes. Piles installed in loose, fine, sand are far more susceptible to cyclic loading than in denser, coarser sand. Little or no change in pile stiffness was seen in tests that remained within the stable cyclic region, even over 10,000 or more cycles. Unstable tests lost their stiffness rapidly and metastable cases showed intermediate behaviours. The permanent deflections developed under cycling depend on the combined influence of Qcyclic/QT, Qmean/QT and N. While model tests provide many valuable insights into the behaviour of piles driven in sand, they are unable to capture some key features observed in the field.


2022 ◽  
Vol 128 (1) ◽  
Author(s):  
STEPHEN J. GODFREY ◽  
ALBERTO COLLARETA ◽  
JOHN R. NANCE

New finds of remarkable coprolites (fossilized feces) are here reported from the famous Miocene marine sediments of the Chesapeake Group exposed along Calvert Cliffs (Maryland, U.S.A.).  Although vertebrate coprolites have been described from these deposits, here we provide the first description of tiny invertebrate fecal pellets. Thus far, these fecal pellets have only been found in the upper Miocene (Tortonian) St. Marys Formation. The micro-coprolites represent the coprulid ichnospecies Coprulus oblongus. The fecal pellets are found in small clusters or strings of dozens to masses of many hundreds. Pellets range in size from approximately 0.4 – 2.0 mm wide by 1.0 – 5.0 mm long, and range in color from gray to brownish black. Their length/diameter ratio is always very nearly 2. These coprulids have been found in a variety of Miocene fossils/concretions including a uranoscopid neurocranium, naticid gastropod, bivalve shells, barnacle tests, and in pellet-backfilled sinuous burrows through sediment. Because the fecal pellets are often found in tiny spaces or spaces thought to be inaccessible to shelled invertebrates, the coprulids are attributed to small and soft-bodied polychaetes or other annelids. Some coprolites attributed to crocodilians from the lower-middle Miocene Calvert Formation were tunneled into, presumably the result of coprophagy, by some unknown kind of organism(s). These compound trace fossils are in the form of burrows that excavate the coprolites, the sides of which are sculptured by scratch/gouge marks.


2021 ◽  
Vol 12 (2) ◽  
pp. 110-116
Author(s):  
Hartono Yudo ◽  
Wilma Amiruddin ◽  
Ari Wibawa Budi Santosa ◽  
Ocid Mursid ◽  
Tri Admono

Buckling and collapse are important failure modes for laying and operating conditions in a subsea position. The pipe will be subjected to various kinds of loads, i.e., bending moment, external pressure, and tension. Nonlinear finite element analysis was used to analyze the buckling strength of the pipe under pure bending and external pressure. The buckling of elastic and elasto-plastic materials was also studied in this work. The buckling strength due to external pressure had decreased and become constant on the long pipe when the length-to-diameter ratio (L/D) was increased. The non-dimensional parameter (β), which is proportionate to (D/t) (σy/E), is used to study the yielding influence on the buckling strength of pipe under combined bending and external pressure loading. The interaction curves of the buckling strength of pipe were obtained, with various the diameter-to-thickness ratio (D/t) under combination loads of external pressure and bending moment. For straight pipes L/D = 2.5 to 40, D = 1000 to 4000 mm, and D/t = 50 to 200 were set. The curved pipes D/t = 200, L/D =2.5 to 30 have been investigated by changing the radius of curvature-to-diameter ratio (R/D) from 50 to ∞, for each one. With decreasing R/D, the buckling strength under external pressure decreases slightly. This is in contrast to the bending of a curved pipe. When the value of R/D was decreased, the flexibility of the pipe was increased. However, the buckling strength of the pipe during bending was decreased due to the oval deformation at the cross-section.


Fractals ◽  
2021 ◽  
Author(s):  
ZHENJIE LIU ◽  
JUN GAO ◽  
BOQI XIAO ◽  
JIYIN CAO ◽  
JING FANG ◽  
...  

The seepage in tree-like bifurcating networks is a very common phenomenon in nature. The research on the transport characteristics of tree-like bifurcating networks has always been a hot topic. In this paper, a novel permeability model for fluid flow in damaged tree-like bifurcating networks is proposed. In the proposed model, the influence of roughness on permeability is considered by means of the fractal method. It is found that the permeability is not only related to the structural parameters of the network but also related to the damaged position and the number of damaged tubes at the damaged position. The effects of these parameters and damaged structure on permeability are discussed separately. The results show that the permeability reduces along with an increase in the roughness level, the length ratio, the number of damaged tubes, and the number of total bifurcating levels. Another major finding is that the permeability increases with an increase in the diameter ratio. Besides, we found that the damaged position and the number of damaged tubes at the damaged position have an important effect on the permeability. Increasing the number of damaged tubes and bringing the damaged position close to the front end of the network will reduce the permeability. Compared with the undamaged network, the permeability of damaged network has a significant decline. The proposed model may provide potential applications for the analysis of fluid flow in damaged tree-like bifurcating network.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lihan Li ◽  
Xin Li ◽  
Jiang Qin ◽  
Silong Zhang ◽  
Wen Bao

In order to extend the cooling capacity of thermal protection in various advanced propulsion systems, dimple as an effective heat transfer enhancement device with low-pressure loss has been proposed in regenerative cooling channels of a scramjet. In this paper, numerical simulation is conducted to investigate the effect of the dimple depth-diameter ratio on the flow and heat transfer characteristics of supercritical hydrocarbon fuel inside the cooling channel. The thermal performance factor is adopted to evaluate the local synthetically heat transfer. The results show that increasing the dimple depth-diameter ratio h / d p can significantly reduce wall temperature and enhance the heat transfer inside the cooling channel but simultaneously increase pressure loss. The reason is that when h / d p is rising, the recirculation zones inside dimples would be enlarged and the reattachment point is moving downstream, which enlarge both the high Nu area at rear edge of dimple and the low Nu area in dimple front. In addition, when fluid temperature is nearer the fluid pseudocritical temperature, local acceleration caused by dramatic fluid property change would reduce the increment of heat transfer and also reduce pressure loss. In this study, the optimal depth-diameter ratio of dimple in regenerative cooling channel of hydrocarbon fueled is 0.2.


Author(s):  
Setia Budi Sumandra ◽  
Bhisma Mahendra ◽  
Fahrudin Nugroho ◽  
Yusril Yusuf

Carbon nanotubes (CNTs) have benefits in various fields, they are disadvantageous due to their tendency to form aggregates and poorly controlled alignment of the CNT molecules (characterized by order parameters). These deficiencies can be overcome by dispersing the CNTs in nematic liquid crystal (LC) and placing the mixture under the influence of an electric field. In this study, Doi and Landau–de Gennes free energy density equations are used to analytically confirm that an electric field increases the order parameters of CNTs and LCs in a dispersion mixture. The anchoring strength of the nematic LC is also found to affect the order parameters of the CNTs and LC. Further, increasing the length-to-diameter ratio of the CNTs increases their alignment without affecting the LC alignment. These findings indicate that CNT molecular alignment can be controlled by adjusting the CNT length-to-diameter ratio, anchoring the LCs, and adjusting the electric field strength.


Sign in / Sign up

Export Citation Format

Share Document