compound action potential amplitude
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 4)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 25 ◽  
pp. 233121652110073
Author(s):  
Kelly C. Johnson ◽  
Zilong Xie ◽  
Maureen J. Shader ◽  
Paul G. Mayo ◽  
Matthew J. Goupell

Cochlear-implant (CI) users rely heavily on temporal envelope cues to understand speech. Temporal processing abilities may decline with advancing age in adult CI users. This study investigated the effect of age on the ability to discriminate changes in pulse rate. Twenty CI users aged 23 to 80 years participated in a rate discrimination task. They attempted to discriminate a 35% rate increase from baseline rates of 100, 200, 300, 400, or 500 pulses per second. The stimuli were electrical pulse trains delivered to a single electrode via direct stimulation to an apical (Electrode 20), a middle (Electrode 12), or a basal location (Electrode 4). Electrically evoked compound action potential amplitude growth functions were recorded at each of those electrodes as an estimate of peripheral neural survival. Results showed that temporal pulse rate discrimination performance declined with advancing age at higher stimulation rates (e.g., 500 pulses per second) when compared with lower rates. The age-related changes in temporal pulse rate discrimination at higher stimulation rates persisted after statistical analysis to account for the estimated peripheral contributions from electrically evoked compound action potential amplitude growth functions. These results indicate the potential contributions of central factors to the limitations in temporal pulse rate discrimination ability associated with aging in CI users.


Sign in / Sign up

Export Citation Format

Share Document