amplitude growth
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 21)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
Tofiq Ahmadpour ◽  
Reyhane Toufan ◽  
Akram Pourbakht ◽  
Mohammad Kamali

Background and Aim: Tinnitus is defined a phantom sound percept. Few studies have examined the occurrence of synaptopathy in tinnitus patients utilizing a battery of tests that indicate synaptopathy. This study aimed to investigate the role of synaptopathy in tinnitus production and compare the various characteristics of the auditory brainstem response (ABR) test and electrocochleography (ECochG) in normal-hearing people with and without tinnitus. Methods: This cross-sectional study was conducted on 34 normal-hearing individuals, 20 without tinnitus as controls (11 females and 9 males) and 14 with tinnitus (8 females and 6 men). The test components (amplitude, growth and slope of wave I, V/I ratio, action potential (AP) amplitude, and summating potential (SP)/AP) ratio were recorded during the ABR and ECochG tests for each subject. Results: The control group had higher mean values of amplitude, growth and slope of wave I, and AP amplitude compared to the tinnitus group, and this difference was statistically significant (p<0.05). The mean V/I ratio and SP/AP ratio were lower in the control group than in the tinnitus group, and this difference was statistically significant (p<0.05). Conclusion: The significant difference in the parameters of ABR and ECochG tests between normal-hearing people with and without tinnitus indicates that these parameters can be used to evaluate the presence of synaptopathy in tinnitus patients. These findings suggest the need for proper interpretation of the results of ABR and ECochG tests in tinnitus patients with a focus on the parameters indicating synaptopathy.


2021 ◽  
Vol 928 ◽  
Author(s):  
Yu Liang ◽  
Lili Liu ◽  
Zhigang Zhai ◽  
Juchun Ding ◽  
Ting Si ◽  
...  

Shock-tube experiments on eight kinds of two-dimensional multi-mode air–SF $_6$ interface with controllable initial conditions are performed to examine the dependence of perturbation growth on initial spectra. We deduce and demonstrate experimentally that the amplitude development of each mode is influenced by the mode-competition effect from quasi-linear stages. It is confirmed that the mode-competition effect is closely related to initial spectra, including the wavenumber, the phase and the initial amplitude of constituent modes. By considering both the mode-competition effect and the high-order harmonics effect, a nonlinear model is established based on initial spectra to predict the amplitude growth of each individual mode. The nonlinear model is validated by the present experiments and data in the literature by considering diverse initial spectra, shock intensities and density ratios. Moreover, the nonlinear model is successfully extended based on the superposition principle to predict the growths of the total perturbation width and the bubble/spike width from quasi-linear to nonlinear stages.


Fluids ◽  
2021 ◽  
Vol 6 (10) ◽  
pp. 348
Author(s):  
Thomas Meunier ◽  
J. H. LaCasce

The finite size Lyapunov exponent (FSLE) has been used extensively since the late 1990s to diagnose turbulent regimes from Lagrangian experiments and to detect Lagrangian coherent structures in geophysical flows and two-dimensional turbulence. Historically, the FSLE was defined in terms of its computational method rather than via a mathematical formulation, and the behavior of the FSLE in the turbulent inertial ranges is based primarily on scaling arguments. Here, we propose an exact definition of the FSLE based on conditional averaging of the finite amplitude growth rate (FAGR) of the particle pair separation. With this new definition, we show that the FSLE is a close proxy for the inverse structural time, a concept introduced a decade before the FSLE. The (in)dependence of the FSLE on initial conditions is also discussed, as well as the links between the FAGR and other relevant Lagrangian metrics, such as the finite time Lyapunov exponent and the second-order velocity structure function.


Author(s):  
Thomas Meunier ◽  
J.H. LaCasce

The Finite size Lyapunov exponent (FSLE) has been used extensively since the late 1990&rsquo;s to diagnose turbulent regimes from Lagrangian experiments and to detect Lagrangian coherent structures in geophysical flows and two-dimensional turbulence. Historically, the FSLE was defined in terms of its computational method rather than via a mathematical formulation, and the behavior of the FSLE in the turbulent inertial ranges is based primarily on scaling arguments. Here we propose an exact definition of the FSLE based on conditional averaging of the finite amplitude growth rate (FAGR) of the particle pair separation. With this new definition, we show that the FSLE is a close proxy for the inverse structural time, a concept introduced a decade before the FSLE. The (in)dependence of the FSLE on initial conditions is also discussed, as well as the links between the FAGR and other relevant Lagrangian metrics, such as the finite time Lyapunov exponent and the second order velocity structure function.


Life ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 203
Author(s):  
Lutz Gärtner ◽  
Katharina Klötzer ◽  
Thomas Lenarz ◽  
Verena Scheper

Cochlear implants (CI) are the treatment of choice in profoundly deaf patients. Measuring the electrically evoked compound action potential (ECAP) has become an important tool for verifying the function of the spiral ganglion neurons (SGN), which are the target cells of the CI stimulation. ECAP measurement is only possible after electrode insertion. No information about the neuronal health status is available before cochlear implantation. We investigated possible correlations between the ECAP amplitude growth function (AGF) slope and anamnestic parameters to identify possible predictors for SGN health status and therefore for CI outcome. The study included patients being implanted with various electrode array lengths. Correlation analysis was performed for the mean AGF slope of the whole array, for separate electrodes as well as for grouped electrodes of the apical, medial, and basal region, with duration of deafness, age at implantation, residual hearing (grouped for electrode length), and etiology. The mean ECAP AGF slopes decreased from apical to basal. They were not correlated to the length of the electrode array or any etiology. For the mean of the full array or when grouped for the apical, middle, and basal part, the ECAP AGF slope was negatively correlated to the duration of hearing loss and the age at implantation. Since a significant negative correlation of the ECAP AGF slope and age at cochlear implantation and duration of deafness was observed, this study supports the statement that early implantation of a CI is recommended for sensorineural hearing loss. Additional factors such as the cochlear coverage and insertion angle influence the ECAP AGF slope and performance of the patient and should be included in future multifactorial analysis to study predictive parameters for the CI outcome.


2021 ◽  
Vol 25 ◽  
pp. 233121652110073
Author(s):  
Kelly C. Johnson ◽  
Zilong Xie ◽  
Maureen J. Shader ◽  
Paul G. Mayo ◽  
Matthew J. Goupell

Cochlear-implant (CI) users rely heavily on temporal envelope cues to understand speech. Temporal processing abilities may decline with advancing age in adult CI users. This study investigated the effect of age on the ability to discriminate changes in pulse rate. Twenty CI users aged 23 to 80 years participated in a rate discrimination task. They attempted to discriminate a 35% rate increase from baseline rates of 100, 200, 300, 400, or 500 pulses per second. The stimuli were electrical pulse trains delivered to a single electrode via direct stimulation to an apical (Electrode 20), a middle (Electrode 12), or a basal location (Electrode 4). Electrically evoked compound action potential amplitude growth functions were recorded at each of those electrodes as an estimate of peripheral neural survival. Results showed that temporal pulse rate discrimination performance declined with advancing age at higher stimulation rates (e.g., 500 pulses per second) when compared with lower rates. The age-related changes in temporal pulse rate discrimination at higher stimulation rates persisted after statistical analysis to account for the estimated peripheral contributions from electrically evoked compound action potential amplitude growth functions. These results indicate the potential contributions of central factors to the limitations in temporal pulse rate discrimination ability associated with aging in CI users.


2021 ◽  
Vol 25 ◽  
pp. 233121652110141
Author(s):  
Marina Imsiecke ◽  
Andreas Büchner ◽  
Thomas Lenarz ◽  
Waldo Nogueira

Amplitude growth functions (AGFs) of electrically evoked compound action potentials (eCAPs) with varying interphase gaps (IPGs) were measured in cochlear implant users with ipsilateral residual hearing (electric-acoustic stimulation [EAS]). It was hypothesized that IPG effects on AGFs provide an objective measure to estimate neural health. This hypothesis was tested in EAS users, as residual low-frequency hearing might imply survival of hair cells and hence better neural health in apical compared to basal cochlear regions. A total of 16 MED-EL EAS subjects participated, as well as a control group of 16 deaf cochlear implant users. The IPG effect on the AGF characteristics of slope, threshold, dynamic range, and stimulus level at 50% maximum eCAP amplitude (level50%) was investigated. AGF threshold and level50% were significantly affected by the IPG in both EAS and control group. The magnitude of AGF characteristics correlated with electrode impedance and electrode-modiolus distance (EMD) in both groups. In contrast, the change of the AGF characteristics with increasing IPG was independent of these electrode-specific measures. The IPG effect on the AGF level50% in both groups, as well as on the threshold in EAS users, correlated with the duration of hearing loss, which is a predictor of neural health. In EAS users, a significantly different IPG effect on level50% was found between apical and medial electrodes. This outcome is consistent with our hypothesis that the influence of IPG effects on AGF characteristics provides a sensitive measurement and may indicate better neural health in the apex compared to the medial cochlear region in EAS users.


Sign in / Sign up

Export Citation Format

Share Document