scholarly journals Prediction of Nonlinear Micro-Milling Force with a Novel Minimum Uncut Chip Thickness Model

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1495
Author(s):  
Tongshun Liu ◽  
Kedong Zhang ◽  
Gang Wang ◽  
Chengdong Wang

The minimum uncut chip thickness (MUCT), dividing the cutting zone into the shear region and the ploughing region, has a strong nonlinear effect on the cutting force of micro-milling. Determining the MUCT value is fundamental in order to predict the micro-milling force. In this study, based on the assumption that the normal shear force and the normal ploughing force are equivalent at the MUCT point, a novel analytical MUCT model considering the comprehensive effect of shear stress, friction angle, ploughing coefficient and cutting-edge radius is constructed to determine the MUCT. Nonlinear piecewise cutting force coefficient functions with the novel MUCT as the break point are constructed to represent the distribution of the shear/ploughing force under the effect of the minimum uncut chip thickness. By integrating the cutting force coefficient function, the nonlinear micro-milling force is predicted. Theoretical analysis shows that the nonlinear cutting force coefficient function embedded with the novel MUCT is absolutely integrable, making the micro-milling force model more stable and accurate than the conventional models. Moreover, by considering different factors in the MUCT model, the proposed micro-milling force model is more flexible than the traditional models. Micro-milling experiments under different cutting conditions have verified the efficiency and improvement of the proposed micro-milling force model.

2021 ◽  
Author(s):  
Jianlong Zhang ◽  
Wei Zhao ◽  
Bo Li ◽  
Wei Tian ◽  
Kan Zheng ◽  
...  

Abstract With their successful applications in handling, spraying, arc welding and other processing fields, industrial robots are gradually replacing traditional CNC machine tools to complete machining tasks due to the wider working envelope and the higher flexibility. Aiming at the chatter problem, a robotic longitudinal-torsional ultrasonic milling method with variable force coefficient is proposed in this paper. Taking Carbon Fiber Reinforced Plastics (CFRP) as the processing object, the influence of the fiber layup angle on the milling force are analyzed first; then the robot milling force parameters are determined and the robot milling kinematics model is established. Furthermore, the ultrasonic function angle is defined, and the cutting layer thickness model, the dynamic milling force model and the dynamic differential equation under ultrasonic vibration are established to analyze the stability of robotic longitudinal-torsional ultrasonic milling of CFRP. Finally, the full discrete method is used to obtain stability lobe diagrams.


Author(s):  
Da Qu ◽  
Bo Wang ◽  
Yuan Gao ◽  
Huajun Cao

Abstract Micro-milling is widely used in various crucial fields with the ability of machining micro- and meso-scaled functional structures on various materials efficiently. However, the micro-milling force model is not comprehensively developed yet when tool feature sizes continually decrease to under two hundred microns in a low-stiffness system. This paper proposes an analytical force model considering the influence of tool radius, size effect, tool runout, tool deflection, and the actual trochoidal trajectories and the interaction of historical tool teeth trajectories (IHTTT). Different micro-milling status are recognized by analyzing the cutting process of different tool teeth. Conditions of single-tooth cutting status are determined by a proposed numerical algorithm, and entry angle and exit angle are analyzed under various cutting conditions for the low-stiffness system. Three micro-milling status, including single-tooth cutting status, are distinguished based on the instantaneous undeformed chip thickness resulting in three types of material removal mechanisms in predicting micro-milling force components. Discontinuous change rates of undeformed chip thickness are found in the low-stiffness micro-milling system. The proposed micro-milling force model is then verified through experiments of micro slot milling Elgiloy alloy with a 150-µm-diametrical two-teeth micro-end-mill. The experimental results show a Root-Mean-Square Error (RSME) of 0.092 N in the predicted resultant force, accounting for approximately 5.12% of the measured force, by which the proposed theoretical model is verified to be of good prediction accuracy.


2018 ◽  
Vol 764 ◽  
pp. 399-407
Author(s):  
Yue Zhang ◽  
Zhi Qiang Yu ◽  
Tai Yong Wang

The instantaneous uncut chip thickness is an important parameter in the study of milling force model. By analyzing the real tooth trajectory in milling process, accurate instantaneous uncut chip thickness can be obtained to solve the complex transcendental equation. Traditional chip thickness models always simplify the tooth trajectory to get approximate solution. A new instantaneous uncut chip thickness model is proposed in this paper. Based on real tooth trajectory of general end milling cutter, a Taylor's series is used to approximate the involved infinitesimal variable in the transcendental equation, which results in an explicit expression for practical application of the uncut chip thickness with higher accuracy compared to the traditional model.


Author(s):  
Zepeng Li ◽  
Rong Yan ◽  
Xiaowei Tang ◽  
Fang Yu Peng ◽  
Shihao Xin ◽  
...  

Abstract In aviation and navigation, complicated parts are milled with high-speed low-feed-per-tooth milling to decrease tool vibration for high quality. Because the nonlinearity of the cutting force coefficient (CFC) is more evident with the relatively smaller instantaneous uncut chip thickness, the stable critical cutting depth and its distribution against different tool postures are affected. Considering the nonlinearity, a nonlinear dynamic CFC model that reveals the effect of the dynamic instantaneous uncut chip thickness on the dynamic cutting force is derived based on the Taylor expansion. A five-axis bull-nose end milling dynamics model is established with the nonlinear dynamic CFC model. The stable critical cutting depth distribution with respect to tool posture is analyzed. The stability results predicted with the dynamic CFC model are compared with those from the static CFC model and the constant CFC model. The effects of tool posture and feed per tooth on stable critical cutting depth were also analyzed, and the proposed model was validated by cutting experiments. The maximal stable critical cutting depths that can be achieved under different tool postures by feed per tooth adjustment were calculated, and corresponding distribution diagrams are proposed for milling parameter optimization.


2018 ◽  
Author(s):  
Isamu Nishida ◽  
Takaya Nakamura ◽  
Ryuta Sato ◽  
Keiichi Shirase

A new method, which accurately predicts cutting force in ball end milling considering cutting edge around center web, has been proposed. The new method accurately calculates the uncut chip thickness, which is required to estimate the cutting force by the instantaneous rigid force model. In the instantaneous rigid force model, the uncut chip thickness is generally calculated on the cutting edge in each minute disk element piled up along the tool axis. However, the orientation of tool cutting edge of ball end mill is different from that of square end mill. Therefore, for the ball end mill, the uncut chip thickness cannot be calculated accurately in the minute disk element, especially around the center web. Then, this study proposes a method to calculate the uncut chip thickness along the vector connecting the center of the ball and the cutting edge. The proposed method can reduce the estimation error of the uncut chip thickness especially around the center web compared with the previous method. Our study also realizes to calculate the uncut chip thickness discretely by using voxel model and detecting the removal voxels in each minute tool rotation angle, in which the relative relationship between a cutting edge and a workpiece, which changes dynamically during tool rotation. A cutting experiment with the ball end mill was conducted in order to validate the proposed method. The results showed that the error between the measured and predicted cutting forces can be reduced by the proposed method compared with the previous method.


Author(s):  
Gongyu Liu ◽  
Jiaqiang Dang ◽  
Weiwei Ming ◽  
Qinglong An ◽  
Ming Chen ◽  
...  

The milling of thin-walled workpieces is a common process in many industries. However, the machining defects are easy to occur due to the vibration and/or deformation induced by the poor stiffness of the thin structures, particularly when side milling the edges of plates. To this problem, an attempt by inclining the tool to a proper tilt angle in milling the edges of plates was proposed in this paper, in order to decrease the cutting force component along the direction of the lowest stiffness of the plates, and therefore to mitigate the machining vibration and improve the machined surface quality effectively. First, the milling force model in consideration of the undeformed chip thickness and the tool-workpiece engagement (TWE) was introduced in detail. Then, a new analytical assessment model based on the precisely established cutting force model was developed so as to obtain the optimum tool tilt angle for the minimum force-induced defects after the operation. Finally, the reliability and correctness of the theoretical force model and the proposed assessment model were validated by experiments. The methodology in this paper could provide practical guidance for achieving high-quality machined surface in the milling operation of thin-walled workpieces.


2019 ◽  
Vol 13 (3) ◽  
pp. 232-240
Author(s):  
Zhixin Feng ◽  
Meng Liu ◽  
Guohe Li

Background: Calibration of cutting coefficients is the key content in modeling a mechanistic cutting force model. Generally, in modeling cutting force for ball end milling, the tangent, radial and binormal cutting force coefficients are each considered as a polynomial, respectively. This fact is due to the dependency between the cutting force coefficients and the cutting edge inclination angle which is variable in ball-end mills. Objective: This paper presents an approach to determine the polynomial cutting force coefficients. Methods: In this approach, the cutting force coefficients are expressed as explicit linear equations about the average slotting forces. After analysis of the least square regression method which is utilized in the cutting coefficients evaluation, the principle of cutting parameters choice in calibration experiment and the relationship between the order of polynomial and the number of experiments are presented. Besides, a lot of patents on identification of polynomial cutting coefficients for milling force model were studied. Results: Finally, a series of semi-slotting verification cutting tests were arranged, the measured force agrees well with the predicted force, which demonstrates the effectiveness of this approach. Conclusion: Based on the calibration method proposed in this paper, the cutting coefficients can be determined through (m+2) slotting experiments for m-degree shearing coefficients polynomial theoretically.


2014 ◽  
Vol 800-801 ◽  
pp. 761-765
Author(s):  
Hui Nan Shi ◽  
Fu Gang Yan ◽  
Yun Peng Ding ◽  
Xian Li Liu ◽  
Rui Zhang

In cavity die corner-machining, tool flexible deformation caused by the milling force resulting in the surface error, a method of off-line error compensation is put forward. Instantaneous chip thickness model and the corner milling force model is established based on differential and the characteristics of the corner. Combining the theory of cantilever beam and the finite element analysis, cutting tool elastic deformation model is established.


Author(s):  
Yong Zhao ◽  
Robert B. Jerard ◽  
Barry K. Fussell

This paper introduces a method to use the cutting force profile, measured from a Kistler dynamometer, to calibrate a mechanistic based force model containing four cutting coefficients. The undesirable effects of tool vibration and force sensor dynamics are minimized by carefully choosing experimental conditions. Cutting force profiles provide an array of force versus chip thickness based values that can be used in a regression fit to find the model coefficients. Results show that different ranges of chip thickness used in the calibration process result in slightly different cutting coefficients, which implies chip thickness has an effect on cutting coefficients. The force profile based cutting coefficients are then used in the cutting force model to estimate the peak resultant cutting force. Comparison of model estimates and measured values show less than 10% error.


Sign in / Sign up

Export Citation Format

Share Document