abstract elementary class
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 1)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
Saharon Shelah ◽  
Andrés Villaveces


2019 ◽  
Vol 84 (3) ◽  
pp. 1240-1251
Author(s):  
SIMON HENRY

AbstractWe show that for any uncountable cardinal λ, the category of sets of cardinality at least λ and monomorphisms between them cannot appear as the category of points of a topos, in particular is not the category of models of a ${L_{\infty ,\omega }}$-theory. More generally we show that for any regular cardinal $\kappa < \lambda$ it is neither the category of κ-points of a κ-topos, in particular, nor the category of models of a ${L_{\infty ,\kappa }}$-theory.The proof relies on the construction of a categorified version of the Scott topology, which constitute a left adjoint to the functor sending any topos to its category of points and the computation of this left adjoint evaluated on the category of sets of cardinality at least λ and monomorphisms between them. The same techniques also apply to a few other categories. At least to the category of vector spaces of with bounded below dimension and the category of algebraic closed fields of fixed characteristic with bounded below transcendence degree.



2017 ◽  
Vol 82 (4) ◽  
pp. 1199-1228
Author(s):  
ÅSA HIRVONEN ◽  
TAPANI HYTTINEN

AbstractWe define and study a metric independence notion in a homogeneous metric abstract elementary class with perturbations that is dp-superstable (superstable wrt. the perturbation topology), weakly simple and has complete type spaces and we give a new example of such a class based on B. Zilber’s approximations of Weyl algebras. We introduce a way to measure the dependence of a tuple a from a set B over another set A. We prove basic properties of the notion, e.g., that a is independent of B over A in the usual sense of homogeneous model theory if and only if the measure of dependence is < ε for all ε > 0. In well behaved situations, the measure corresponds to the distance to a free extension. As an example of our measure of dependence we show a connection between the measure and entropy in models from quantum mechanics in which the spectrum of the observable is discrete. As an application, we show that weak simplicity implies a very strong form of simplicity and study the question of when the dependence inside a set of all realisations of some type can be seen to arise from a pregeometry in cases when the type is not regular. In the end of the paper, we demonstrate our notions and results in one more example: a class built from the p-adic integers.



2017 ◽  
Vol 82 (1) ◽  
pp. 98-119 ◽  
Author(s):  
JOHN T. BALDWIN ◽  
MARTIN KOERWIEN ◽  
MICHAEL C. LASKOWSKI

AbstractWe introduce the concept of a locally finite abstract elementary class and develop the theory of disjoint$\left( { \le \lambda ,k} \right)$-amalgamation) for such classes. From this we find a family of complete ${L_{{\omega _1},\omega }}$ sentences ${\phi _r}$ that a) homogeneously characterizes ${\aleph _r}$ (improving results of Hjorth [11] and Laskowski–Shelah [13] and answering a question of [21]), while b) the ${\phi _r}$ provide the first examples of a class of models of a complete sentence in ${L_{{\omega _1},\omega }}$ where the spectrum of cardinals in which amalgamation holds is other that none or all.



2016 ◽  
Vol 81 (1) ◽  
pp. 357-383 ◽  
Author(s):  
SEBASTIEN VASEY

AbstractWe prove that any tame abstract elementary class categorical in a suitable cardinal has an eventually global good frame: a forking-like notion defined on all types of single elements. This gives the first known general construction of a good frame in ZFC. We show that we already obtain a well-behaved independence relation assuming only a superstability-like hypothesis instead of categoricity. These methods are applied to obtain an upward stability transfer theorem from categoricity and tameness, as well as new conditions for uniqueness of limit models.



2015 ◽  
Vol 80 (3) ◽  
pp. 763-784 ◽  
Author(s):  
JOHN T. BALDWIN ◽  
PAUL B. LARSON ◽  
SAHARON SHELAH

AbstractTheorem. Suppose that k = (K, $$\prec_k$$) is an ℵ0-presentable abstract elementary class with Löwenheim–Skolem number ℵ0, satisfying the joint embedding and amalgamation properties in ℵ0. If K has only countably many models in ℵ1, then all are small. If, in addition, k is almost Galois ω-stable then k is Galois ω-stable. Suppose that k = (K, $$\prec_k$$) is an ℵ0-presented almost Galois ω-stable AEC satisfying amalgamation for countable models, and having a model of cardinality ℵ1. The assertion that K is ℵ1-categorical is then absolute.



2013 ◽  
Vol 78 (2) ◽  
pp. 602-632 ◽  
Author(s):  
Adi Jarden ◽  
Alon Sitton

AbstractThe notion J is independent in (M, M0, N) was established by Shelah, for an AEC (abstract elementary class) which is stable in some cardinal λ and has a non-forking relation, satisfying the good λ-frame axioms and some additional hypotheses. Shelah uses independence to define dimension.Here, we show the connection between the continuity property and dimension: if a non-forking satisfies natural conditions and the continuity property, then the dimension is well-behaved.As a corollary, we weaken the stability hypothesis and two additional hypotheses, that appear in Shelah's theorem.



2007 ◽  
Vol 149 (1-3) ◽  
pp. 25-39 ◽  
Author(s):  
John T. Baldwin ◽  
Paul C. Eklof ◽  
Jan Trlifaj


2006 ◽  
Vol 71 (2) ◽  
pp. 553-568 ◽  
Author(s):  
Rami Grossberg ◽  
Monica Vandieren

AbstractWe prove a categoricity transfer theorem for tame abstract elementary classes.Suppose that K is a χ-tame abstract elementary class and satisfies the amalgamation and joint embedding properties and has arbitrarily large models. Let λ ≥ Max{χ, LS(K+}. If K is categorical in λ and λ+, then K is categorical in λ++.Combining this theorem with some results from [37]. we derive a form of Shelah's Categoricity Conjecture for tame abstract elementary classes:Suppose K is χ-tame abstract elementary class satisfying the amalgamation and joint embedding properties. Let μ0 ≔ Hanf(K). Ifand K is categorical in somethen K is categorical in μ for all μ .



2006 ◽  
Vol 06 (01) ◽  
pp. 25-48 ◽  
Author(s):  
RAMI GROSSBERG ◽  
MONICA VANDIEREN

We introduce tame abstract elementary classes as a generalization of all cases of abstract elementary classes that are known to permit development of stability-like theory. In this paper, we explore stability results in this new context. We assume that [Formula: see text] is a tame abstract elementary class satisfying the amalgamation property with no maximal model. The main results include:. Theorem 0.1. Suppose that [Formula: see text] is not only tame, but [Formula: see text]-tame. If [Formula: see text] and [Formula: see text] is Galois stable in μ, then [Formula: see text], where [Formula: see text] is a relative of κ(T) from first order logic. [Formula: see text] is the Hanf number of the class [Formula: see text]. It is known that [Formula: see text]. The theorem generalizes a result from [17]. It is used to prove both the existence of Morley sequences for non-splitting (improving [22, Claim 4.15] and a result from [7]) and the following initial step towards a stability spectrum theorem for tame classes:. Theorem 0.2. If [Formula: see text] is Galois-stable in some [Formula: see text], then [Formula: see text] is stable in every κ with κμ=κ. For example, under GCH we have that [Formula: see text] Galois-stable in μ implies that [Formula: see text] is Galois-stable in μ+n for all n < ω.



Sign in / Sign up

Export Citation Format

Share Document