ehresmann semigroups
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Mark V. Lawson
Keyword(s):  




2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Wadii Hajji

The first theorem in this article provides the connection between Ehresmann semigroups and range prerestriction semigroups defined by the author. By this connection, we can redefine any Ehresmann semigroups by two unary operations and eight axioms. This connection leads us to a generalization of Ehresmann’s theorem for a range prerestriction categories; as special cases, we obtain Ehresmann’s theorems for range restriction categories and for inverse categories.



Author(s):  
S.-F. Wang ◽  
Q.-F. Yan
Keyword(s):  


2021 ◽  
Vol 6 (7) ◽  
pp. 7044-7055
Author(s):  
Shoufeng Wang ◽  
Keyword(s):  




2018 ◽  
Vol 105 (2) ◽  
pp. 257-288 ◽  
Author(s):  
SHOUFENG WANG

As generalizations of inverse semigroups, Ehresmann semigroups are introduced by Lawson and investigated by many authors extensively in the literature. In particular, Lawson has proved that the category of Ehresmann semigroups and admissible morphisms is isomorphic to the category of Ehresmann categories and strongly ordered functors, which generalizes the well-known Ehresmann–Schein–Nambooripad (ESN) theorem for inverse semigroups. From a varietal perspective, Ehresmann semigroups are derived from reducts of inverse semigroups. In this paper, inspired by the approach of Jones [‘A common framework for restriction semigroups and regular $\ast$-semigroups’, J. Pure Appl. Algebra216 (2012), 618–632], Ehresmann semigroups are extended from a varietal perspective to pseudo-Ehresmann semigroups derived instead from reducts of regular semigroups with a multiplicative inverse transversal. Furthermore, motivated by the method used by Gould and Wang [‘Beyond orthodox semigroups’, J. Algebra368 (2012), 209–230], we introduce the notion of inductive pseudocategories over admissible quadruples by which pseudo-Ehresmann semigroups are described. More precisely, we show that the category of pseudo-Ehresmann semigroups and (2,1,1,1)-morphisms is isomorphic to the category of inductive pseudocategories over admissible quadruples and pseudofunctors. Our work not only generalizes the result of Lawson for Ehresmann semigroups but also produces a new approach to characterize regular semigroups with a multiplicative inverse transversal.





2017 ◽  
Vol 15 (1) ◽  
pp. 1132-1147
Author(s):  
Shoufeng Wang

Abstract As a generalization of the class of inverse semigroups, the class of Ehresmann semigroups is introduced by Lawson and investigated by many authors extensively in the literature. In particular, Gomes and Gould construct a fundamental Ehresmann semigroup CE from a semilattice E which plays for Ehresmann semigroups the role that TE plays for inverse semigroups, where TE is the Munn semigroup of a semilattice E. From a varietal perspective, Ehresmann semigroups are derived from reduction of inverse semigroups. In this paper, from varietal perspective Ehresmann semigroups are extended to generalized Ehresmann semigroups derived instead from normal orthodox semigroups (i.e. regular semigroups whose idempotents form normal bands) with an inverse transversal. We present here a semigroup C(I,Λ,E∘) from an admissible triple (I, Λ, E∘) that plays for generalized Ehresmann semigroups the role that CE from a semilattice E plays for Ehresmann semigroups. More precisely, we show that a semigroup is a fundamental generalized Ehresmann semigroup whose admissible triple is isomorphic to (I, Λ, E∘) if and only if it is (2,1,1,1)-isomorphic to a quasi-full (2,1,1,1)-subalgebra of C(I,Λ,E∘). Our results generalize and enrich some results of Fountain, Gomes and Gould on weakly E-hedges semigroups and Ehresmann semigroups.



2017 ◽  
Vol 96 (3) ◽  
pp. 603-607 ◽  
Author(s):  
Itamar Stein
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document