double vector bundle
Recently Published Documents


TOTAL DOCUMENTS

2
(FIVE YEARS 2)

H-INDEX

0
(FIVE YEARS 0)

Author(s):  
Eckhard Meinrenken ◽  
Jeffrey Pike

Abstract Given a double vector bundle $D\to M$, we define a bigraded bundle of algebras $W(D)\to M$ called the “Weil algebra bundle”. The space ${\mathcal{W}}(D)$ of sections of this algebra bundle ”realizes” the algebra of functions on the supermanifold $D[1,1]$. We describe in detail the relations between the Weil algebra bundles of $D$ and those of the double vector bundles $D^{\prime},\ D^{\prime\prime}$ obtained from $D$ by duality operations. We show that ${\mathcal{V}\mathcal{B}}$-algebroid structures on $D$ are equivalent to horizontal or vertical differentials on two of the Weil algebras and a Gerstenhaber bracket on the 3rd. Furthermore, Mackenzie’s definition of a double Lie algebroid is equivalent to compatibilities between two such structures on any one of the three Weil algebras. In particular, we obtain a ”classical” version of Voronov’s result characterizing double Lie algebroid structures. In the case that $D=TA$ is the tangent prolongation of a Lie algebroid, we find that ${\mathcal{W}}(D)$ is the Weil algebra of the Lie algebroid, as defined by Mehta and Abad–Crainic. We show that the deformation complex of Lie algebroids, the theory of IM forms and IM multi-vector fields, and 2-term representations up to homotopy all have natural interpretations in terms of our Weil algebras.


2019 ◽  
Vol 16 (02) ◽  
pp. 1950021
Author(s):  
Andrew James Bruce

Graded bundles are a particularly nice class of graded manifolds and represent a natural generalization of vector bundles. By exploiting the formalism of supermanifolds to describe Lie algebroids, we define the notion of a weighted[Formula: see text]-connection on a graded bundle. In a natural sense weighted [Formula: see text]-connections are adapted to the basic geometric structure of a graded bundle in the same way as linear [Formula: see text]-connections are adapted to the structure of a vector bundle. This notion generalizes directly to multi-graded bundles and in particular we present the notion of a bi-weighted[Formula: see text]-connection on a double vector bundle. We prove the existence of such adapted connections and use them to define (quasi-)actions of Lie algebroids on graded bundles.


Sign in / Sign up

Export Citation Format

Share Document