horizontal differential stress
Recently Published Documents


TOTAL DOCUMENTS

2
(FIVE YEARS 2)

H-INDEX

1
(FIVE YEARS 1)

SPE Journal ◽  
2019 ◽  
Vol 25 (03) ◽  
pp. 1503-1522 ◽  
Author(s):  
Yushi Zou ◽  
Xinfang Ma ◽  
Shicheng Zhang

Summary Temporary-plugging fracturing (TPF) is becoming a promising technique for maximizing the stimulated-reservoir volume in tight reservoirs by injecting diverting agents to plug the preferred perforations and/or hydraulic fractures (HFs). Previous work has developed diverting agents and evaluated their blocking efficiency. However, the mechanism and dominant influence factors of HF growth during TPF remain poorly understood to date, which restricts the application of this technique. To understand the problem and help improve the TPF design, this study simulated the HF-propagation process during TPF in a naturally fractured formation using a previously developed 3D discrete-element-method (DEM) -based complex fracture model. Plugged fracture elements with negligible permeability were incorporated into the model to characterize the blocking intervals of diverting agents within HFs. Parameters, including horizontal differential stress (Δσh), natural-fracture (NF) properties, the number of pluggings, plugging positions, and pumping rate, were investigated to determine their effects on the HF/NF-interaction behavior and the resulting HF geometry. The change in injection pressure before and after plugging under different conditions was also recorded in detail. Modeling results show that the HF/NF-interaction behavior might surprisingly change before and after plugging the preferred HF, ranging from HF crossing of NFs to HF opening of NFs. Notably, Δσh is still the most influential geological parameter that governs the HF-growth behavior during TPF. For a moderate Δσh (=8 MPa), the growth of a single planar HF before plugging can be changed easily into a complex HF network (HFN) through opening of NFs after plugging in the target stimulated region (TSR). In this case, the complexity and covering area of the resulting HFN is closely related to the NF density (positive correlation) and plugging positions. However, for a high Δσh (=12 MPa), opening (usually partially) the NFs after plugging is difficult even in formations with a high density of NFs. In such a case, a large volume of fluid, a high pumping rate, and several repeat pluggings during TPF are necessary. The results of this study help to understand the HF-growth mechanism during TPF and help to optimize the treatment design of TPF and to adjust it in a timely manner.


Sign in / Sign up

Export Citation Format

Share Document