Injection Pressure
Recently Published Documents


TOTAL DOCUMENTS

1753
(FIVE YEARS 820)

H-INDEX

46
(FIVE YEARS 19)

Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 104
Author(s):  
Nan Li ◽  
Liulin Fang ◽  
Bingxiang Huang ◽  
Peng Chen ◽  
Chao Cai ◽  
...  

Hydraulic fracturing (HF) is an effective technology to prevent and control coal dynamic disaster. The process of coal hydraulic fracturing (HF) induces a large number of microseismic/acoustic emission (MS/AE) waveforms. Understanding the characteristic of AE waveforms’ parameters is essential for evaluating the fracturing effect and optimizing the HF strategy in coal formation. In this study, laboratory hydraulic fracturing under true triaxial stress was performed on a cubic coal sample combined with AE monitoring. The injection pressure curve and temporal variation of AE waveforms’ parameters in different stages were analyzed in detail. The experimental results show that the characteristics of the AE waveforms’ parameters well reflect the HF growth behavior in coal. The majority of AE waveforms’ dominant frequency is distributed between 145 and 160 kHz during HF. The sharp decrease of the injection pressure curve and the sharp increase of the AE waveforms’ amplitude show that the fracture already runs through the coal sample during the initial fracture stage. The “trapezoidal” rise pattern of cumulative energy and most AE waveforms with low amplitude may indicate the stage of liquid storage space expansion. The largest proportion of AE waveforms’ energy and higher overall level of AE waveforms’ amplitude occur during the secondary fracture stage, which indicates the most severe degree of coal fracture and complex activity of internal fracture. The phenomenon shows the difference in fracture mechanism between the initial and secondary fracture stage. We propose a window-number index of AE waveforms for better response to hydraulic fracture, which can improve the accuracy of the HF process division.


2022 ◽  
pp. rapm-2021-103363 ◽  
Author(s):  
Fabio Costa ◽  
Giuseppe Pascarella ◽  
Romualdo Del Buono ◽  
Alessandro Strumia ◽  
Lorenzo Schiavoni ◽  
...  

2022 ◽  
Author(s):  
Zhi-Hao Dong ◽  
Xiaohua Pan ◽  
Chao-Sheng Tang ◽  
Bin Shi

Abstract Rock weathering fractures in nature are complex and fracture healing is an effective strategy for rock weathering mitigation. This study is a first attempt to apply microbially induced calcium carbonate precipitation (MICP) technology in the healing of nature-weathering-like rough fractures (NWLRF). Sandstone was studied as an example due to it is a wide-spread construction, sculpture and monuments material all over the world. In order to achieve a high healing efficiency, a repeated mixture injection strategy was proposed. Based on a series of laboratory MICP injection experiments on four types of NWLRF, we systematically explored the fundamental micro-healing mechanism and the influence of factors including fracture aperture, characteristics of branch fractures, and cementation solution concentration. Experimental results demonstrated that MICP healing with the repeated mixture injection strategy had the ability to efficiently heal the penetrated NWLRF well with length in centimeter-scale and aperture in millimeter-scale, but cannot heal the non-penetrated branch fractures under low injection pressure. The repeated mixture injection strategy furtherly achieved a high apparent fracture healing ratio and a significant reduction of transmissivity. The apparent fracture healing ratios of all main fractures were higher than 80% and the maximum was 99.1%. Fracture transmissivity was reduced by at least three orders of magnitude from about 1×10-4 m2/s to less than 1×10-7 m2/s, and the highest reduction reached to four orders. For the aspect of the effects, larger cementation solution concentration, finer aperture and the existing of penetrated branch fracture were beneficial to improve the healing effect. Moreover, the MICP healing mechanism with high fracture healing ratio and significant reduction of transmissivity on sandstone NWLRF was also analyzed. The research results have important theoretical significance and technical guidance value for the disaster prevention and mitigation of rock weathering.


2022 ◽  
Author(s):  
John E. Busteed ◽  
Jesus Arroyo ◽  
Francisco Morales ◽  
Mohammed Omer ◽  
Francisco E. Fragachan

Abstract Uniformly distributing proppant inside fractures with low damage on fracture conductivity is the most important index of successful fracturing fluids. However, due to very low proppant suspension capacity of slickwater and friction reducers fracturing fluids and longer fracture closure time in nano & pico darcies formations, proppants settles quickly and accumulates near wellbore resulting in worse-than-expected well performance, as the fracture full capacity is not open and contributing to production. Traditionally, cross-linked polymer fluid systems are capable to suspend and transport high loading of proppants into a hydraulically generated fracture. Nevertheless, amount of unbroken cross-linked polymers is usually left in fractures causing damage to fracture proppant conductivity, depending on polymer loading. To mitigate these challenges, a low viscosity-engineered-fluid with excellent proppantcarrying capacity and suspension-in excess of 30 hours at static formation temperature conditions - has been designed, enhancing proppant placement and distribution within developed fractures, with a 98% plus retained conductivity. In this work experimental and numerical tests are presented together with the path followed in developing a network of packed structures from polymer associations providing low viscosity and maximum proppant suspension. Challenges encountered during field injection with friction are discussed together with the problem understanding characterized via extensive friction loop tests. Suspension tests performed with up to 8-10 PPA of proppant concentration at temperature conditions are shared, together with slot tests performed. Physics-based model results from a 3D Discrete Fracture Network simulator that computes viscosity, and elastic parameters based on shear rate, allows to estimate pressure losses along the flow path from surface lines, tubular goods, perforations, and fracture. This work will demonstrate the advanced capabilities and performance of the engineered fluid over conventional fracturing fluids and its benefits. Additionally, this paper will present field injection pressure analysis performed during the development of this fluid, together with a field case including production results after 8 months of treatment. The field case production decline observed after fracture treatment demonstrates the value of this system in sustaining well production and adding additional reserves.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Huan Chen ◽  
Li-yu Shan ◽  
Tao Ma ◽  
Yue Wang ◽  
Zhe Feng ◽  
...  

Abstract Background X-ray cholangiography is of great value in the imaging of biliary tract diseases; however, occupational radiation exposure is unavoidable. Moreover, clinicians must manually inject the contrast dye, which may result in a relatively high incidence of adverse reactions due to unstable injection pressure. Thus, there is a need to develop a novel remote-controlled cholangiography injection device. Methods Patients with external biliary drainage requiring cholangiography were included. A remote-controlled injection device was developed with three major components: an injection pump, a pressure sensor, and a wireless remote-control panel. Image quality, adverse reactions, and radiation dose were evaluated. Results Different kinds of X-ray cholangiography were successfully and smoothly performed using this remote-controlled injection device in all patients. The incidence of adverse reactions in the device group was significantly lower than that in the manual group (4.17% vs. 13.9%, P = 0.001), and increasing the injection pressure increased the incidence of adverse reactions. In addition, the device helped operators avoid ionizing radiation completely. Conclusions With good control of injection pressure (within 10 kPa), the remote-controlled cholangiography injection device could replace the need for the doctor to inject contrast agent with good security and effectivity. It is expected to be submitted for clinical application.


2022 ◽  
Author(s):  
Yuan-Jian LIN ◽  
Jiang-Feng LIU ◽  
Tao CHEN ◽  
Bing-Xiang HUANG ◽  
Kundwa Marie Judith ◽  
...  

Abstract In this paper, a THMC (Thermal-Hydrological-Mechanical-Chemical) multi-field coupling triaxial cell was used to systematically study the evolution of gas permeability and the deformation characteristics of sandstone. The effects of confining pressure, axial pressure, and air pressure on gas permeability characteristics were fully considered in the test. The gas permeability of sandstone decreases with increasing confining pressure. When the confining pressure is low, the variation of gas permeability is greater than the variation of gas permeability at high confining pressure. The gas injection pressure has a significant effect on the gas permeability evolution of sandstone. As the gas injection pressure increases, the gas permeability of sandstone tends to decrease. At the same confining pressure, the gas permeability of the sample during the unloading path is less than the gas permeability of the sample in the loading path. When axial pressure is applied, it has a significant influence on the permeability evolution of sandstone. When the axial pressure is less than 30 MPa, the gas permeability of the sandstone increases as the axial pressure increases. At axial pressures greater than 30 MPa, the permeability decreases as the axial pressure increases. Finally, the micro-pore/fracture structure of the sample after the gas permeability test was observed using 3D X-ray CT imaging.


Author(s):  
Takashi Yajima ◽  
Kei-ichi Imamoto ◽  
Chizuru Kiyohara ◽  
Mikako Yamada

There are many valuable wooden buildings in the world, because timber has been used all over the world as a building material for a long time. However, there is an issue that timber deteriorates due to various factors. Therefore, in order to preserve these valuable wooden buildings, it is necessary to appropriately repair or reinforce treatment. One of the treatments is the resin filling method. In this method, filling the resin in order to restore the strength into an internal cavity caused by deterioration. It has become clear that it is possible to recover the strength using this method, however, we are still conducting construction based on the rule of thumb. Therefore, authors examined the resin characteristics in order to inject the resin in stable manner and ensure strength recovery. Authors focused on deteriorated timber due to termites, because Japan has a very high amount of such type of timber. Authors reports the following four aspects of the characteristics of resin filling into timber. 1. The Area velocity is determined by the injection pressure, width of the gap, and viscosity of the resin. 2. The resin spreads concentrically in the gap of wood, but there is no regularity in the random gap like deteriorated timber due to termites. 3. Authors proposed a new coefficient for the application, of a theoretical formula to deteriorated timber due to termites. 4. Authors proposed a flowchart of resin filling method to perform stable construction.


2022 ◽  
Vol 36 (06) ◽  
Author(s):  
VO TAN CHAU ◽  
DUONG HOANG LONG ◽  
CHINDA CHAROENPHONPHANICH

The diesel combustion is primarily controlled by the fuel injection process. The start of injection therefore has a significant effect in the engine, which relates large amount of injected fuel at the beginning of injection to produces a strong burst of combustion with a high local temperature and high NOx formation. This paper investigated the impact of Hydrotreated Vegetable Oil (HVO) and blends of 10%, 20%, 30%, 50%, 80% by mass of HVO with commercial diesel fuel (mixed 7% FAME-B7) to injection process under the Zeuch’s method and compared to that of B7. The focus was on the injection flow rate in the variation of injection pressures, back pressures, and energizing times. The experimental results indicated that injection delay was inversely correlated to HVO fraction in the blend as well as injection pressure. At different injection pressures, HVO revealed a slightly lower injection rate than diesel that resulted in smaller injection quantity. Discharge coefficient was recognized larger with HVO and its blends. At 0.5ms of energizing time, injection rate profile displayed the incompletely opening of needle. Insignificant difference in injection rate was observed as increasing of back pressure.


2022 ◽  
Vol 58 (4) ◽  
pp. 102-113
Author(s):  
Sukran Katmer ◽  
Cetin Karatas

The shape memory effect, as the most important ability of shape memory polymers, is a working property and provides the design ability to shape memory polymer features. Shrinkage and warpage are important parameters to control the dimensional accuracy of permanent and temporary shapes of an injection moulded shape memory polyurethane (SMPU) part. In this study, the effects of injection moulding parameters on the shrinkage and warpage of the permanent shape of moulded SMPU parts were experimentally investigated. The parameters of injection pressure, melt temperature, mould temperature, packing pressure, packing time, and cooling time, were chosen as the injection moulding control factors. Taguchi�s L27 orthogonal array design table was used with six injection moulding parameters and their three levels. The results showed that the part has different shrinkage ratios in three main directions, namely, the flow direction, perpendicular to the flow direction, and the direction through the thickness. The results of the analysis of variance showed that the cooling time is the most influential parameter on both the shrinkage (except in thickness) and warpage. The shrinkage in the flow direction as well as in perpendicular to the flow direction decreased with increasing the cooling time. Warpage also decreased with increasing the cooling time. Injection pressure and melt temperature were found to be effective on shrinkage in thickness. Effects of mould temperature, packing pressure, and packing time were found to be limited. A statistically significant relationship has been noticed among shrinkage, warpage, and residual stresses during the study.


Sign in / Sign up

Export Citation Format

Share Document