The influence of deviatoric and horizontal differential stress and pore pressure on hydraulic fracture opening by fully coupled 3D cohesive elements method

2019 ◽  
Vol 12 (2) ◽  
Author(s):  
Seyed Erfan Saberhosseini ◽  
Reza Keshavarzi
SPE Journal ◽  
2021 ◽  
pp. 1-12
Author(s):  
Gang Hui ◽  
Shengnan Chen ◽  
Zhangxin Chen ◽  
Fei Gu ◽  
Mathab Ghoroori ◽  
...  

Summary The relationships among formation properties, fracturing operations, and induced earthquakes nucleated at distinctive moments and positions remain unclear. In this study, a complete data set on formations, seismicity, and fracturing treatments is collected in Fox Creek, Alberta, Canada. The data set is then used to characterize the induced seismicity and evaluate its susceptibility toward fracturing stimulations via integration of geology, geomechanics, and hydrology. Five mechanisms are identified to account for spatiotemporal activation of the nearby faults in Fox Creek, where all major events [with a moment magnitude (Mw) greater than 2.5] are caused by the increase in pore pressure and poroelastic stress during the fracturing operation. In addition, an integrated geological index (IGI) and a combined geomechanical index (CGI) are first proposed to indicate seismicity susceptibility, which is consistent with the spatial distribution of induced earthquakes. Finally, mitigation strategy results suggest that enlarging a hydraulic fracture-fault distance and decreasing a fracturing job size can reduce the risk of potential seismic activities.


2021 ◽  
Author(s):  
Taylor Levon ◽  
Kit Clemons ◽  
Ben Zapp ◽  
Tim Foltz

Abstract With a recent trend in increased infill well development in the Midland basin and other unconventional plays, it has been shown that depletion has a significant impact on hydraulic fracture propagation. This is largely because production drawdown causes in-situ stress changes, resulting in asymmetric fracture growth toward the depleted regions. In turn, this can have a negative impact on production capacity. For the initial part of this study, an infill child well was drilled and completed adjacent to a parent well that had been producing for two years. Due to drilling difficulties, the child well was steered to a new target zone located 125 feet above the original target. However, relative to the original target, treatment data from the new zone indicated abnormal treatment responses leading to a study to evaluate the source of these variations and subsequent mitigation. The initial study was conducted using a pore pressure estimation derived from drill bit geomechanics data to investigate depletion effects on the infill child well. The pore pressure results were compared to the child well treatment responses and bottom hole pressure measurements in the parent well. Following the initial study, additional hydraulic fracture modeling studies were conducted on a separate pad to investigate depletion around the infill wells, determine optimal well spacing for future wells given the level of depletion, and optimize treatment designs for future wells in similar depletion scenarios. A depletion model workflow was implemented based on integrating hydraulic fracture modeling and reservoir analytics for future infill pad development. The geomechanical properties were calibrated by DFIT results and pressure matching of the parent well treatments for the in-situ virgin conditions. Parent well fracture geometries were used in an RTA for an analytical approach of estimating drainage area of the parent wells. These were then applied to a depletion profile in the hydraulic fracture model for well spacing analysis and treatment design sensitivities. Results of the initial study indicated that stages in the new, higher interval had higher breakdown pressures than the lower interval. Additionally, the child well drilled in the lower interval had normal breakdown pressures in line with the parent well treatments. This suggests that treatment differences in the wells were ultimately due to depletion of the offset parent well. Based on the modeling efforts, optimal infill well spacing was determined based on the on-production time of the parent wells. The optimal treatment designs were also determined under the same conditions to minimize offset frac hits and unnecessary completion costs. This case study presents the use of a multi-disciplinary approach for well spacing and treatment optimization. The integration of a novel method of estimating pore pressure and depletion modeling workflows were used in an inventive way to understand depletion effects on future development.


2019 ◽  
Vol 9 (21) ◽  
pp. 4720 ◽  
Author(s):  
Ge ◽  
Zhang ◽  
Sun ◽  
Hu

Although numerous studies have tried to explain the mechanism of directional hydraulic fracturing in a coal seam, few of them have been conducted on gas migration stimulated by directional hydraulic fracturing during coal mine methane extraction. In this study, a fully coupled multi-scale model to stimulate gas extraction from a coal seam stimulated by directional hydraulic fracturing was developed and calculated by a finite element approach. The model considers gas flow and heat transfer within the hydraulic fractures, the coal matrix, and cleat system, and it accounts for coal deformation. The model was verified using gas amount data from the NO.8 coal seam at Fengchun mine, Chongqing, Southwest China. Model simulation results show that slots and hydraulic fracture can expand the area of gas pressure drop and decrease the time needed to complete the extraction. The evolution of hydraulic fracture apertures and permeability in coal seams is greatly influenced by the effective stress and coal matrix deformation. A series of sensitivity analyses were performed to investigate the impacts of key factors on gas extraction time of completion. The study shows that hydraulic fracture aperture and the cleat permeability of coal seams play crucial roles in gas extraction from a coal seam stimulated by directional hydraulic fracturing. In addition, the reasonable arrangement of directional boreholes could improve the gas extraction efficiency. A large coal seam dip angle and high temperature help to enhance coal mine methane extraction from the coal seam.


2020 ◽  
Vol 38 (3-4) ◽  
pp. 127-147
Author(s):  
Weiyong Lu ◽  
Bingxiang Huang

During hydraulic fracturing in gassy coal, methane is driven by hydraulic fracturing. However, its mathematical model has not been established yet. Based on the theory of ‘dual-porosity and dual-permeability’ fluid seepage, a mathematical model is established, with the cleat structure, main hydraulic fracture and methane driven by hydraulic fracturing considered simultaneously. With the help of the COMSOL Multiphysics software, the numerical solution of the mathematical model is obtained. In addition, the space–time rules of water and methane saturation, pore pressure and its gradient are obtained. It is concluded that (1) along the direction of the methane driven by hydraulic fracturing, the pore pressure at the cleat demonstrates a trend of first decreasing and later increasing. The pore pressure gradient exhibits certain regional characteristics along the direction of the methane driven by hydraulic fracturing. (2) Along the direction of the methane driven by hydraulic fracturing, the water saturation exhibits a decreasing trend; however, near the cleat or hydraulic fracture, the water saturation first increases and later decreases. The water saturation in the central region of the coal matrix block is smaller than that of its surrounding region, while the saturation of water in the entire matrix block is greater than that in the cleat or hydraulic fracture surrounding the matrix block. The water saturation at the same space point increases gradually with the time progression. The space–time distribution rules of methane saturation are contrary to those of the water saturation. (3) The free methane driven by hydraulic fracturing includes the original free methane and the free methane desorbed from the adsorption methane. The reduction rate of the adsorption methane is larger than that of free methane.


Sign in / Sign up

Export Citation Format

Share Document