fracture opening
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 25)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Author(s):  
John Murray

The influence of faulting on the eruptive mechanisms of Mt Etna has been intensively studied, especially regarding the importance of regional tectonics, magma pressure, gravitational spreading and east flank instability. Here we examine the influence of an additional process: the wholesale sliding of the Etna massif along its sloping basement. Using laboratory analogue experiments, we create a series of model volcanoes on sloping basements, with obstructions to represent the mountains and hills surrounding Etna, and an unconstrained downslope edge to represent the unbuttressed seaward slopes. We find that analogues of all the Etna fault systems can be produced in the same model. Furthermore, we find that the relative velocities of transcurrent faulting and extension of each model flank fault system match those of Mt Etna in every case. We also find convincing evidence that gravitational spreading of the summit cone, combined with downslope sliding, controls the position of future eruptive vents around the summit, by creating faults and fractures that form paths of least resistance for magma intrusions. The intruding magma in turn augments fracture opening by an order of magnitude, in a feedback process that dominates within the summit graben. We conclude that gravitational spreading and sliding are the dominant processes in creating faults at Etna, and that these two processes, augmented by magma pressure, are responsible for the rapid seaward movement of the eastern slopes, tectonically cut off from the stable western flanks. The influence of regional tectonism is up to two orders of magnitude lower. The conceptual model derived here could make an important contribution to the investigation and monitoring of eruptive, seismic and landslide hazards, by providing a unified mechanical system that can be used to understand deformation.


2021 ◽  
Author(s):  
Kildare George Ramos Gurjao ◽  
Eduardo Gildin ◽  
Richard Gibson ◽  
Mark Everett

Abstract The use of fiber optics in reservoir surveillance is bringing valuable insights to fracture geometry and fracture-hit identification, stage communication and perforation cluster fluid distribution in many hydraulic fracturing processes. However, given the complexity associated with field data, its interpretation is a major challenge faced by engineers and geoscientists. In this work, we propose to generate Distributed Strain/Acoustic Sensing (DSS/DAS) synthetic data of a cross-well fiber deployment that incorporate the physics governing hydraulic fracturing treatments. Our forward modeling is accurate enough to be reliably used in tandem with data-driven (machine learning) interpretation methods. The forward modeling is based on analytical and numerical solutions. The analytical solution is developed integrating two models: 2D fracture (e.g. Khristianovic-Geertsma-de Klerk known as KGD) and induced stress (e.g. Sneddon, 1946). DSS is estimated using the plane strain approach that combines calculated stresses and rock properties (e.g. Young's modulus and Poisson ratio). On the other hand, the numerical solution is implemented using the Displacement Discontinuity Method (DDM), a type of Boundary Element Method (BEM), with net pressure and/or shear stress as boundary condition. In this case, fiber gauge length concept is incorporated deriving displacement (i.e. DDM output) in space to obtain DSS values. In both methods DAS is estimated by the differentiation of DSS in time. The analytical technique considers a single fracture opening and is used in a sensitivity analysis to evaluate the impact that rock/fluid parameters can promote on strain time histories. Moreover, advanced cases including multiple fractures failing in tensile or shear mode are simulated applying the numerical technique. Results indicate that our models are able to capture typical characteristics present in field data: heart-shaped pattern from a fracture approaching the fiber, stress shadow and fracture hits. In particular, the numerical methodology captures relevant phenomenon associated with hydraulic and natural fractures interaction, and provides a solid foundation for generating accurate and rich synthetic data that can be used to support a physics-based machine learning interpretation framework. The developed forward modeling, when embedded in a classification or regression artificial intelligence framework, will be an important tool adding substantial insights related to field fracture systems that ultimately can lead to production optimization. Also, the development of specific packages (commercial or otherwise) that explicitly model both DSS and DAS, incorporating the impact of fracture opening and slippage on strain and strain rate, is still in its infancy. This paper is novel in this regard and opens up new avenues of research and applications of synthetic DAS/DSS in hydraulic fracturing processes.


Geophysics ◽  
2021 ◽  
pp. 1-93
Author(s):  
Vladimir Leviant ◽  
Naum Marmalevsky ◽  
Igor Kvasov ◽  
Polina Stognii ◽  
Igor Petrov

One of the most urgent problems of oil and gas reservoir monitoring is the assessment of fractured reservoir infill type – with fluid-filled, gas-filled or closed (no-reservoir situation) fractures, which is of significant value for time-lapse seismic technology. We used the grid-characteristic method (GCM) for numerical modeling of seismic responses from fractured periodic elasto-acoustic structures. We consider every single fracture individually (without using the effective medium approach), and set explicit boundary conditions on fracture surfaces. We assume realistic height-to-thickness ratios – fracture opening (aperture) – equaling 3 to 5 orders of magnitude. These techniques make our models as close to real fractured reservoirs as possible. Analyzing the simulated seismic responses, we solve the problem of assessing fractured reservoir infill type. As a result, previously unknown properties of seismic responses from fractured reservoirs were revealed. We use AVO as the main tool for the analysis of fracture infill type effect on the seismic response in three frequency ranges. Three out of four models exhibit a stable positive AVO gradient regardless of the rock type and frequency range. The analysis of linearized Zoeppritz equations confirms such AVO behavior. We proposed quantitative criteria (indicators) for recognition of a fracture infill type. Amplitude-frequency analysis is shown to expand the capabilities of infill type recognition. Thus, a method for determining fractured reservoir infill type is established for carbonate and shale formations, which could become the basis for a new direction in time-lapse technology.


2021 ◽  
Vol 9 (4) ◽  
pp. 977-994
Author(s):  
Daniel Draebing

Abstract. In alpine environments, tectonic processes, past glaciation and weathering processes fracture rock and prepare or trigger rockfalls, which are important processes of rock slope evolution and natural hazards. In this study, I quantify thermally and ice-induced rock and fracture kinematics and place these in the context of their role in producing rockfall and climate change. I conducted laboratory measurements on intact rock samples and installed temperature loggers and crackmeters at four rockwalls reaching from 2585 to 2935 m in elevation in the Hungerli Valley, Swiss Alps. My laboratory data show that thermal expansion followed three phases of rock kinematics, which resulted in a hysteresis effect. In the field, control crackmeters on intact rock reflected these temperature phases, and based on thermal expansion coefficients of these observed phases, I modelled thermal stress. Model results show that thermal stress magnitudes were predominantly below rock strengths. Crackmeters across fractures revealed fracture opening during cooling and reverse closing behaviour during warming on daily timescales. Elevation-dependent snow cover controlled the number of daily temperature changes and thermal stresses affecting both intact and fractured rock, while the magnitude is controlled by topographic factors influencing insolation. On a seasonal scale, slow ice-segregation-induced fracture opening can occur within lithology-dependent temperature regimes called frost cracking windows. Shear plane dipping controlled whether fractures opened or closed irreversibly with time due to thermally induced block crawling on an annual scale. Climate change will shorten snow duration and increase temperature extremes and will, therefore, affect the number and the magnitude of thermal changes and associated stresses. Earlier snowmelt in combination with temperature increase will shift the ice-induced kinematic processes to higher elevations. In conclusion, climate change will affect and change rock and fracture kinematics and, therefore, change rockfall patterns in alpine environments. Future work should quantify rockfall patterns and link these patterns to climatic drivers.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tom Kettlety ◽  
James P. Verdon

We investigate the physical mechanisms governing the activation of faults during hydraulic fracturing. Recent studies have debated the varying importance of different fault reactivation mechanisms in different settings. Pore pressure increase caused by injection is generally considered to be the primary driver of induced seismicity. However, in very tight reservoir rocks, unless a fracture network exists to act as a hydraulic conduit, the rate of diffusion may be too low to explain the spatio-temporal evolution of some microseismic sequences. Thus, elastic and poroelastic stress transfer and aseismic slip have been invoked to explain observations of events occurring beyond the expected distance of a reasonable diffusive front. In this study we use the high quality microseismic data acquired during hydraulic fracturing at the Preston New Road (PNR) wells, Lancashire, UK, to examine fault triggering mechanisms. Injection through both wells generated felt induced seismicity—an ML 1.6 during PNR-1z injection in 2018 and an ML 2.9 during PNR-2 in 2019—and the microseismic observations show that each operation activated different faults with different orientations. Previous studies have already shown that PNR-1z seismicity was triggered by a combination of both direct hydraulic effects and elastic stress transfer generated by hydraulic fracture opening. Here we perform a similar analysis of the PNR-2 seismicity, finding that the PNR-2 fault triggering was mostly likely dominated by the diffusion of increased fluid pressure through a secondary zone of hydraulic fractures. However, elastic stress transfer caused by hydraulic fracture opening would have also acted to promote slip. It is significant that no microseismicity was observed on the previously activated fault during PNR-2 operations. This dataset therefore provides a unique opportunity to estimate the minimum perturbation required to activate the fault. As it appears that there was no hydraulic connection between them during each stimulation, any perturbation caused to the PNR-1z fault by PNR-2 stimulation must be through elastic or poroelastic stress transfer. As such, by computing the stress transfer created by PNR-2 stimulation onto the PNR-1z fault, we are able to approximate the minimum bound for the required stress perturbation: in excess of 0.1 MPa, orders of magnitude larger than stated estimates of a generalized triggering threshold.


2021 ◽  
Vol 127 ◽  
pp. 104956
Author(s):  
Zhao Wang ◽  
Xiuxiang Lv ◽  
Ying Li ◽  
Hongtao Liang ◽  
Ling Li ◽  
...  

2021 ◽  
Author(s):  
Nick Roberts ◽  
Jack Lee

<p>Several isotopic systems can potentially be used to provide absolute chronology of carbonate minerals; these include Rb-Sr, Sm-Nd, U-Pb and U-Th. The production of a robust date requires incorporation of the parent isotope during formation, and ideally low abundance of the daughter isotope. Variable parent-daughter (P/D) abundance during formation additionally can increase the robustness of the resulting isochron. The ability to use high spatial resolution sampling via laser ablation (LA-) ICP-MS, makes it the most attractive technique, as varying P/D ratios can be sampled within single age domains, whether these be crystals, growth bands, or other textural domains. Of the systems available in carbonate, U-Pb is the only one that is commonly applied with LA-ICP-MS methods, although the others are all possible with modern instrumentation. Of note, collision-cell technology means that Rb-Sr is regaining popularity as an in situ dating method. Carbonate geochronology can be achieved at a range of timescales, with U-Th ranging from 100s yrs to ca. 500 ka, and U-Pb ranging from 100s ka to 100s Ma. The potential for isotopic disequilibrium effecting measured U-Pb ages, means that young (< 10 Ma) U-Pb dates are susceptible to inaccuracy. Published LA-ICP-MS U-Pb dates suggest that this method can be pushed well into the Precambrian.</p><p> </p><p>The application of U-Th and U-Pb geochronology to provide direct timing constraints on deformation gained ground around 10 and 5 years ago, respectively. Because LA-ICP-MS instrumentation is relatively common, and because ancient carbonates provide undated material of significant interest, U-Pb in particular has become a rapidly growing technique. The biggest advance in LA-ICP-MS U-Pb dating has been the characterisation of matrix-matched calcite reference materials (RMs). The observation of minor matrix-related effects between carbonate matrices however, means that the availability of well characterised RMs for minerals such as dolomite and siderite, are a limiting factor in the accuracy of these non-calcite dates. In terms of deformation, most existing data corresponds to calcite.</p><p> </p><p>Calcite precipitates from fluid at a range of temperatures in the upper crust, with fluid-flow typically being enhanced by brittle deformation, i.e. faulting and fracturing. To link calcite dates to the timing of specific deformational events, such as fault slip or fracture-opening, various ‘syn-tectonic’ or ‘syn-kinematic’ vein types have ben utilised. These include slickenfibres, breccia cements, and various types of vein arrays. Each of these structures has variable ability to faithfully record the timing of fault slip, and the ability to link calcite mineralisation to the timing of fault slip remains one of the most assumptive parts of this method. Detailed petrographic and compositional characterisation and documentation are required, for which a range of methods are available, such as cathodoluminescence and trace element mapping. Along with a summary of the advances in carbonate geochronology, various examples of vein structures and of methods for characterisation will be discussed, including examples where there is evidence for overprinting by later fluid-flow.</p>


2021 ◽  
Author(s):  
Arcady Dyskin ◽  
Elena Pasternak

<p>Propagation of hydraulic fractures in rocks is often a non-smooth process, which leaves behind a number of rock bridges distributed all over the fracture. The bridges constrict the fracture opening and thus affect the determination of hydraulic fracture dimensions from the volume of pump-in fracturing fluid. This makes it necessary to detect the emergence of bridges and their concentration over the fracture surface.</p><p>Opening of hydraulic fractures in rocks is determined by a balance of pressure from the fracturing fluid and the normal component of the in-situ compressive stress. If an external excitation is applied (e.g. by a seismic wave), closure of the fracture is additionally resisted by the stiffness of fracturing fluid. Subsequently, a simple model of hydraulic fracture is presented by a bilinear spring with a certain stiffness in tension and a very high stiffness in compression. This constitutes so-called bilinear oscillator [1, 2] in which the compressive stiffness considerably exceeds the tensile one. The presence of bridges increases stiffness in tension thus reducing bilinearity of the modelling spring. Therefore the determination of the bilinearity is a first step in the reconstructing the effective stiffness of the bridges.  </p><p>We use the model of bilinear oscillator, identify multiple resonances and determine the first two harmonics (or first two peaks of in the power spectrum). The ratio of their amplitudes directly depends upon the bilinearity (ratio of compressive to tensile stiffnesses), hence the bilinearity is determinable from the amplitude ratio. Then the effective bridge stiffness can be estimated.</p><p>1. Dyskin, A.V., E. Pasternak and E. Pelinovsky, 2012. Periodic motions and resonances of impact oscillators. Journal of Sound and Vibration 331(12) 2856-2873. ISBN/ISSN 0022-460X, 04/06/2012.</p><p>2. Pasternak, E., A. Dyskin<sup></sup>and Ch. Qi, 2020. Impact oscillator with non-zero bouncing point. International Journal of Engineering Science, 103203.</p><p><strong>Acknowledgement</strong>. The authors acknowledge support from the Australian Research Council through project DP190103260.</p>


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Lili Cao ◽  
Pu Zhang ◽  
Jiazhi Zhang ◽  
Gang Lin ◽  
Izhar Mithal Jiskani ◽  
...  

The hysteresis of water-sediment mixture seepage in rock fractures is one of the critical factors which affect the determination of the timing of coal mine water inrush disasters prevention and control. In this paper, a mechanical model was established to study the hysteresis whose criteria were also put forward. The area of the hysteresis loop and the maximum pressure gradient were selected as characterization parameters of hysteresis. On this basis, an experimental system was established to study influences of different sand particle size, sand mass concentration, and fracture opening on water-sediment mixture seepage in rock fractures. The results indicated that the increase in the sand particle size and sand mass concentration could effectively enhance hysteresis characteristics of specimen fractures. While hysteresis characteristics decreased significantly with the increase of fracture opening. The research results are useful to prevent and control water inrush disasters of coal mine.


Sign in / Sign up

Export Citation Format

Share Document