discrete comput geom
Recently Published Documents


TOTAL DOCUMENTS

2
(FIVE YEARS 0)

H-INDEX

0
(FIVE YEARS 0)

2019 ◽  
Vol 64 (3) ◽  
pp. 965-984
Author(s):  
István Kovács ◽  
Géza Tóth

Abstract A planar point set of n points is called $$\gamma $$ γ -dense if the ratio of the largest and smallest distances among the points is at most $$\gamma \sqrt{n}$$ γ n . We construct a dense set of n points in the plane with $$ne^{\Omega ({\sqrt{\log n}})}$$ n e Ω ( log n ) halving lines. This improves the bound $$\Omega (n\log n)$$ Ω ( n log n ) of Edelsbrunner et al. (Discrete Comput Geom 17(3):243–255, 1997). Our construction can be generalized to higher dimensions, for any d we construct a dense point set of n points in $$\mathbb {R}^d$$ R d with $$n^{d-1}e^{\Omega ({\sqrt{\log n}})}$$ n d - 1 e Ω ( log n ) halving hyperplanes. Our lower bounds are asymptotically the same as the best known lower bounds for general point sets.



2019 ◽  
Vol 30 (01) ◽  
pp. 1950003
Author(s):  
Yoosik Kim ◽  
Jaeho Lee ◽  
Fumihiko Sanda

We provide a combinatorial way to locate non-displaceable Lagrangian toric fibers on any compact toric manifold. By taking the intersection of certain tropicalizations coming from its moment polytope, one can detect all Lagrangian toric fibers having non-vanishing Floer cohomology ([K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono, Lagrangian Floer theory on compact toric manifolds, I, Duke Math. J. 151(1) (2010) 23–174; K. Fukaya, Y.-G. Oh, H. Ohta and K. Ono, Lagrangian Floer theory on compact toric manifolds II: bulk deformations, Selecta Math. (N.S.) 17(3) (2011) 609–711.]). The intersection completely characterizes all non-displaceable toric fibers, in some cases including pseudo symmetric smooth Fano varieties ([G. Ewald, On the classification of toric Fano varieties, Discrete Comput. Geom. 3(1) (1988) 49–54.]).



Sign in / Sign up

Export Citation Format

Share Document