dynamic transition theory
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Lan Jia ◽  
Liang Li

<p style='text-indent:20px;'>In this paper, we aim to investigate the dynamic transition of the Klausmeier-Gray-Scott (KGS) model in a rectangular domain or a square domain. Our research tool is the dynamic transition theory for the dissipative system. Firstly, we verify the principle of exchange of stability (PES) by analyzing the spectrum of the linear part of the model. Secondly, by utilizing the method of center manifold reduction, we show that the model undergoes a continuous transition or a jump transition. For the model in a rectangular domain, we discuss the transitions of the model from a real simple eigenvalue and a pair of simple complex eigenvalues. our results imply that the model bifurcates to exactly two new steady state solutions or a periodic solution, whose stability is determined by a non-dimensional coefficient. For the model in a square domain, we only focus on the transition from a real eigenvalue with algebraic multiplicity 2. The result shows that the model may bifurcate to an <inline-formula><tex-math id="M1">\begin{document}$ S^{1} $\end{document}</tex-math></inline-formula> attractor with 8 non-degenerate singular points. In addition, a saddle-node bifurcation is also possible. At the end of the article, some numerical results are performed to illustrate our conclusions.</p>



2019 ◽  
pp. 31-127
Author(s):  
Tian Ma ◽  
Shouhong Wang


Author(s):  
Chun-Hsiung Hsia ◽  
Chang-Shou Lin ◽  
Tian Ma ◽  
Shouhong Wang

The main objective of this article is to study the effect of the moisture on the planetary scale atmospheric circulation over the tropics. The modelling we adopt is the Boussinesq equations coupled with a diffusive equation of humidity, and the humidity-dependent heat source is modelled by a linear approximation of the humidity. The rigorous mathematical analysis is carried out using the dynamic transition theory. In particular, we obtain mixed transitions, also known as random transitions, as described in Ma & Wang (2010 Discrete Contin. Dyn. Syst. 26 , 1399–1417. ( doi:10.3934/dcds.2010.26.1399 ); 2011 Adv. Atmos. Sci. 28 , 612–622. ( doi:10.1007/s00376-010-9089-0 )). The analysis also indicates the need to include turbulent friction terms in the model to obtain correct convection scales for the large-scale tropical atmospheric circulations, leading in particular to the right critical temperature gradient and the length scale for the Walker circulation. In short, the analysis shows that the effect of moisture lowers the magnitude of the critical thermal Rayleigh number and does not change the essential characteristics of dynamical behaviour of the system.



2013 ◽  
pp. 25-121 ◽  
Author(s):  
Tian Ma ◽  
Shouhong Wang




Sign in / Sign up

Export Citation Format

Share Document