cartesian decomposition
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 1)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
G. Ramesh ◽  
B. Sudip Ranjan ◽  
D. Venku Naidu


Filomat ◽  
2020 ◽  
Vol 34 (14) ◽  
pp. 4649-4657
Author(s):  
Monire Hajmohamadi ◽  
Rahmatollah Lashkaripour

We present some inequalities related to the Hilbert-Schmidt numerical radius of 2 x 2 operator matrices. More precisely, we present a formula for the Hilbert-Schmidt numerical radius of an operator as follows: w2(T) = sup ?2+?2=1 ||?A + ?B||2, where T = A + iB is the Cartesian decomposition of T ? HS(H).





2016 ◽  
Vol 120 (43) ◽  
pp. 24866-24876 ◽  
Author(s):  
William J. I. DeBenedetti ◽  
Erik S. Skibinski ◽  
Joshua A. Hinckley ◽  
Sara B. Nedessa ◽  
Melissa A. Hines


Filomat ◽  
2016 ◽  
Vol 30 (10) ◽  
pp. 2623-2629
Author(s):  
Dongjun Chen ◽  
Yun Zhanga

Let A = Re A + i Im A be the Cartesian decomposition of square matrix A of order n with Re A = A+A*/2 and Im A = A-A*/2i. Fan-Hoffman?s result asserts that ?j(ReA)? sj(A), j=1,..., n, where ?j(M) and sj(M) stand for the jth largest eigenvalue of M and the jth largest singular value of M, respectively. We investigate singular value inequalities for real and imaginary parts of matrices and prove the following inequalities: sj(Re A) ? 1/4 sj([(|A|+|A*|)-(A+A*)]?[(|A|+|A*|)+(A+A*)]), and sj(Im A) ? 1/4 sj([(|A|+|A*|)- i(A*-A)] ? [(|A|+|A*|) + i(A*-A)]), j = 1,..., n. In particular, we have sj(Re A) ? 1/2 sj((|A|+|A*|)? (|A|+|A*|)), and sj(Im A) ? 1/2 sj((|A|+|A*|)? (|A|+|A*|)), j=1,..., n. Moreover, we also show that these inequalities are sharp.



2015 ◽  
Vol 471 ◽  
pp. 46-53 ◽  
Author(s):  
Fuad Kittaneh ◽  
Mohammad Sal Moslehian ◽  
Takeaki Yamazaki


2015 ◽  
Vol 99 (1) ◽  
pp. 85-107 ◽  
Author(s):  
JOY MORRIS ◽  
PABLO SPIGA

In this paper, we combine group-theoretic and combinatorial techniques to study $\wedge$-transitive digraphs admitting a cartesian decomposition of their vertex set. In particular, our approach uncovers a new family of digraphs that may be of considerable interest.





Sign in / Sign up

Export Citation Format

Share Document