perfectly normal space
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 2)

H-INDEX

1
(FIVE YEARS 0)

2021 ◽  
Vol 71 (2) ◽  
pp. 423-428
Author(s):  
Olena Karlova

Abstract We characterize the uniform convergence points set of a pointwisely convergent sequence of real-valued functions defined on a perfectly normal space. We prove that if X is a perfectly normal space which can be covered by a disjoint sequence of dense subsets and A ⊆ X, then A is the set of points of the uniform convergence for some convergent sequence (fn ) n∈ω of functions fn : X → ℝ if and only if A is Gδ -set which contains all isolated points of X. This result generalizes a theorem of Ján Borsík published in 2019.



2021 ◽  
Vol 9 (1) ◽  
pp. 210-229
Author(s):  
O. Maslyuchenko ◽  
A. Kushnir

In this paper we continue the study of interconnections between separately continuous function which was started by V. K. Maslyuchenko. A pair (g, h) of functions on a topological space is called a pair of Hahn if g ≤ h, g is an upper semicontinuous function and h is a lower semicontinuous function. We say that a pair of Hahn (g, h) is generated by a function f, which depends on two variables, if the infimum of f and the supremum of f with respect to the second variable equals g and h respectively. We prove that for any perfectly normal space X and non-pseudocompact space Y every pair of Hahn on X is generated by a continuous function on X x Y . We also obtain that for any perfectly normal space X and for any space Y having non-scattered compactification any pair of Hahn on X is generated by a separately continuous function on X x Y .



2019 ◽  
Vol 26 (2) ◽  
pp. 315-319
Author(s):  
Ivane Tsereteli

Abstract A (Hausdorf) hereditarily normal (not perfectly normal) space X is constructed, which has the following properties: (a) there exists a proper open subspace of X which is homeomorphic to the whole X (i.e., the space X is topologically infinite); (b) the space is homeomorphic to none of its proper {F_{\sigma}} -subspaces (i.e., the space X is topologically finite relative to the class of all its proper {F_{\sigma}} -subspaces).



2012 ◽  
Vol 2012 ◽  
pp. 1-5
Author(s):  
Xin Zhang

Characterizations of strongly compact spaces are given based on the existence of a star-countable open refinement for every increasing open cover. It is proved that a countably paracompact normal space (a perfectly normal space or a monotonically normal space) is strongly paracompact if and only if every increasing open cover of the space has a star-countable open refinement. Moreover, it is shown that a space is linearlyDprovided that every increasing open cover of the space has a point-countable open refinement.



1978 ◽  
Vol 30 (02) ◽  
pp. 243-249 ◽  
Author(s):  
William Weiss

The relationship between compact and countably compact topological spaces has been studied by many topologists. In particular an important question is: “What conditions will make a countably compact space compact?” Conditions which are “covering axioms” have been extensively studied. The best results of this type appear in [19]. We wish to examine countably compact spaces which are separable or perfectly normal. Recall that a space is perfect if and only if every closed subset is a Gδ, and that a space is perfectly normal if and only if it is both perfect and normal. We show that the following statement follows from MA +┐ CH and thus is consistent with the usual axioms of set theory: Every countably compact perfectly normal space is compact. This result is Theorem 3 and can be understood without reading much of what goes before.



Sign in / Sign up

Export Citation Format

Share Document