telegraphic approximation
Recently Published Documents


TOTAL DOCUMENTS

2
(FIVE YEARS 2)

H-INDEX

0
(FIVE YEARS 0)

2020 ◽  
Vol 77 (7) ◽  
pp. 2375-2392
Author(s):  
Lei Liu ◽  
Fei Hu

AbstractThe intermittency of atmospheric turbulence plays an important role in the understanding of particle dispersal in the atmospheric boundary layer and in the statistical simulation of high-frequency wind speed in various applications. There are two kinds of intermittency, namely, the magnitude intermittency (MI) related to non-Gaussianity and the less studied clusterization intermittency (CI) related to long-term correlation. In this paper, we use a 20 Hz ultrasonic dataset lasting for 1 month to study CI of turbulent velocity fluctuations at different scales. Basing on the analysis of return-time distribution of telegraphic approximation series, we propose to use the shape parameter of the Weibull distribution to measure CI. Observations of this parameter show that contrary to MI, CI tends to weaken as the scale increases. Besides, significant diurnal variations, showing that CI tends to strengthen during the daytime (under unstable conditions) and weaken during the nighttime (under stable conditions), are found at different observation heights. In the convective boundary layer, the mixed-layer similarity is found to scale the CI exponent better than the Monin–Obukhov similarity. At night, CI is found to vary less with height in the regime with large mean wind speeds than in the regime with small mean wind speeds, according to the hockey-stick theory.


2020 ◽  
Author(s):  
Georg Jocher ◽  
Milan Fischer ◽  
Ladislav Šigut ◽  
Marian Pavelka ◽  
Pavel Sedlák ◽  
...  

<p>Concurrent below (0.14 • canopy height) and above canopy sonic anemometer vertical velocity (w) measurements reveal frequent decoupling events between the air masses below and above the canopy at a dense spruce forest stand in mountainous terrain. Decoupling events occurred predominantly during nighttime but not exclusively. Several single-level approaches based on steady state and integral turbulence characteristic tests as well as u<sub>*</sub> filtering and two-level CO<sub>2</sub> flux filtering methods are tested. These tests aimed at evaluating the filtering schemes to address decoupling and its effect on above canopy derived eddy covariance CO<sub>2</sub> fluxes. In addition to the already existing two-level filtering approach based on the correlation of σ<sub>w</sub> above and below canopy, two new filtering methods are introduced based on w raw data below and above the canopy. One is a telegraphic approximation agreement, which assumes coupling when w both above and below canopy are pointing in the same direction. Another one evaluates the cross correlation maximum between below and above canopy w data. This study suggests that none of the single-level approaches can detect decoupling when compared to two-level filtering approaches. It further suggests that the newly introduced two-level approaches based on w raw data may have advantages in comparison to the conventional σ<sub>w</sub> approach regarding their flexibility on shorter time scales than one year. We tested the correlation of the newly introduced filtering approaches with the parameters u<sub>*</sub>, global radiation, buoyancy forcing across the canopy and wind shear across the canopy. In any case, this correlation was not existing or weakly positive, suggesting that concurrent below and above canopy measurements are mandatory for addressing decoupling sufficiently. Sonic anemometer measurements near the forest floor and above the canopy are sufficient to apply the new procedures and can be implemented in a routine manner at any forest site globally.</p>


Sign in / Sign up

Export Citation Format

Share Document