finite fault method
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 9)

H-INDEX

3
(FIVE YEARS 1)

2022 ◽  
Vol 9 ◽  
Author(s):  
Pengfei Dang ◽  
Qifang Liu ◽  
Linjian Ji

By using the stochastic finite-fault method based on static corner frequency (Model 1) and dynamic corner frequency (Model 2), we calculate the far-field received energy (FRE) and acceleration response spectra (SA) and then compare it with the observed SA. The results show that FRE obtained by the two models depends on the subfault size regardless of high-frequency scaling factor (HSF). Considering the HSF, the results obtained by Model 1 and Model 2 are found to be consistent. Then, similar conclusion was obtained from the Northridge earthquake. Finally, we analyzed the reasons and proposed the areas that need to be improved.


Author(s):  
Tianjia Wang ◽  
Xu Xie ◽  
Longfei Ji

ABSTRACT The stochastic finite-fault method (EXSIM) has been extensively used for simulating ground motion at high frequencies. However, its poor performance in low-frequency simulations is a limiting factor that restricts its engineering application. Refining the representation of the radiation pattern in the finite-fault method is an effective strategy to improve low-frequency simulations; to this end, a frequency-dependent radiation pattern has been considered by several researchers. However, this strategy fails to provide an accurate simulation of seismic-wave propagation at distances beyond the near-fault region. Researchers have proposed various approaches for characterizing the radiation pattern variation with distance. This study introduces frequency- and distance-dependent radiation patterns of S waves to the EXSIM. The near-field acceleration records in the east–west and north–south directions of the 2013 Ms 7.0 Lushan earthquake were reconstructed. The proposed method was verified by: (1) comparing broadband simulation results obtained by the improved method with observed results, (2) conducting a misfit analysis to compare the model bias between the improved and original methods, and (3) comparing the observed and simulated peak ground acceleration data with the predicted values of the ground-motion prediction equations (GMPEs) to verify the effectiveness of the GMPEs in describing the regional ground-motion attenuation. The results indicated that the 5%-damped pseudo spectral accelerations at high frequencies (1–20 Hz) and acceleration time history simulated by the improved method were consistent with the observed values. Furthermore, the improved method effectively optimizes the simulation effect at low frequencies (0.05–1 Hz) compared with the original method. Thus, the improvement in the representation of the radiation pattern in EXSIM can better estimate broadband ground motion in the study area.


Sign in / Sign up

Export Citation Format

Share Document