Ground motion modelling in northwestern Himalaya using stochastic finite-fault method

2020 ◽  
Vol 103 (2) ◽  
pp. 1989-2007
Author(s):  
Ramees R. Mir ◽  
Imtiyaz A. Parvez
2015 ◽  
Vol 744-746 ◽  
pp. 878-883
Author(s):  
Ju Fang Zhong ◽  
Jun Wei Liang ◽  
Zhi Peng Fan ◽  
Luo Long Zhan

Owing to the simulated ground motion energy distribution by stochastic finite-fault method is not reasonable, near-field bedrock strong ground motion acceleration time histories are used to study. Fourier transform is adapted to analysis the variation of the energy accumulation curve with frequency. The results show that the record energy accumulation curve is a steep rise curve, 80% of total energy of the vertical ground motion is concentrated on the 2.5-15Hz, while the horizontal is mainly concentrated on the 2-11Hz. An improved stochastic finite-fault method is proposed by multiplying an amplification factor in some frequency. The results show that multiplying an amplification factor, the simulated acceleration energy accumulation curve matches to the record acceleration energy accumulation curve, and the peak of simulated acceleration response spectrum tends to the record acceleration value.


Author(s):  
Tianjia Wang ◽  
Xu Xie ◽  
Longfei Ji

ABSTRACT The stochastic finite-fault method (EXSIM) has been extensively used for simulating ground motion at high frequencies. However, its poor performance in low-frequency simulations is a limiting factor that restricts its engineering application. Refining the representation of the radiation pattern in the finite-fault method is an effective strategy to improve low-frequency simulations; to this end, a frequency-dependent radiation pattern has been considered by several researchers. However, this strategy fails to provide an accurate simulation of seismic-wave propagation at distances beyond the near-fault region. Researchers have proposed various approaches for characterizing the radiation pattern variation with distance. This study introduces frequency- and distance-dependent radiation patterns of S waves to the EXSIM. The near-field acceleration records in the east–west and north–south directions of the 2013 Ms 7.0 Lushan earthquake were reconstructed. The proposed method was verified by: (1) comparing broadband simulation results obtained by the improved method with observed results, (2) conducting a misfit analysis to compare the model bias between the improved and original methods, and (3) comparing the observed and simulated peak ground acceleration data with the predicted values of the ground-motion prediction equations (GMPEs) to verify the effectiveness of the GMPEs in describing the regional ground-motion attenuation. The results indicated that the 5%-damped pseudo spectral accelerations at high frequencies (1–20 Hz) and acceleration time history simulated by the improved method were consistent with the observed values. Furthermore, the improved method effectively optimizes the simulation effect at low frequencies (0.05–1 Hz) compared with the original method. Thus, the improvement in the representation of the radiation pattern in EXSIM can better estimate broadband ground motion in the study area.


2010 ◽  
Vol 100 (5B) ◽  
pp. 2476-2490 ◽  
Author(s):  
H. Ghasemi ◽  
Y. Fukushima ◽  
K. Koketsu ◽  
H. Miyake ◽  
Z. Wang ◽  
...  

2021 ◽  
Author(s):  
Nesrin Yenihayat ◽  
Eser Çaktı ◽  
Karin Şeşetyan

<p>One of the major earthquakes that resulted in intense damages in Istanbul and its neighborhoods took place on 10 July 1894. The 1894 earthquake resulted in 474 losses of life and 482 injuries. Around 21,000 dwellings were damaged, which is a number that corresponds to 1/7 of the total dwellings of the city at that time. Without any doubt, the exact loss of life was higher. Because of the censorship, the exact loss numbers remained unknown. There is still no consensus about its magnitude, epicentral location, and rupture of length. Even though the hardness of studying with historical records due to their uncertainties and discrepancies, researchers should enlighten the source parameters of the historical earthquakes to minimize the effect of future disasters especially for the cities located close to the most active fault lines as Istanbul. The main target of this study is to enlighten possible source properties of the 1894 earthquake with the help of observed damage distribution and stochastic ground motion simulations. In this paper, stochastic based ground motion scenarios will be performed for the 10 July 1894 Istanbul earthquake, using a finite fault simulation approach with a dynamic corner frequency and the results will be compared with our intensity map obtained from observed damage distributions. To do this, in the first step, obtained damage information from various sources has been presented, evaluated, and interpreted. Secondly, we prepared an intensity map associated with the 1894 earthquake based on macro-seismic information, and damage analysis and classification. For generating ground motions with a stochastic finite fault simulation approach, the EXSIM 2012 software has been used. Using EXSIM, several scenarios are modeled with different source, path, and site parameters. Initial source properties have been obtained from findings of our previous study on the simulation of the 26 September 2019 Silivri (Istanbul) earthquake with Mw 5.8. With the comparison of spatial distributions of the ground motion intensity parameters to the obtained damage and intensity maps, we estimate the optimum location and source parameters of the 1894 Earthquake.</p>


2015 ◽  
Vol 31 (3) ◽  
pp. 1629-1645 ◽  
Author(s):  
Ronnie Kamai ◽  
Norman Abrahamson

We evaluate how much of the fling effect is removed from the NGA database and accompanying GMPEs due to standard strong motion processing. The analysis uses a large set of finite-fault simulations, processed with four different high-pass filter corners, representing the distribution within the PEER ground motion database. The effects of processing on the average horizontal component, the vertical component, and peak ground motion values are evaluated by taking the ratio between unprocessed and processed values. The results show that PGA, PGV, and other spectral values are not significantly affected by processing, partly thanks to the maximum period constraint used when developing the NGA GMPEs, but that the bias in peak ground displacement should not be ignored.


Sign in / Sign up

Export Citation Format

Share Document