scholarly journals Stochastic Finite-Fault Method Based on Dynamic Corner Frequency to Simulate the Mw6.2 Tottori earthquake in Japan

Author(s):  
Songlin Xia ◽  
Qifang Liu ◽  
Jian Song
2022 ◽  
Vol 9 ◽  
Author(s):  
Pengfei Dang ◽  
Qifang Liu ◽  
Linjian Ji

By using the stochastic finite-fault method based on static corner frequency (Model 1) and dynamic corner frequency (Model 2), we calculate the far-field received energy (FRE) and acceleration response spectra (SA) and then compare it with the observed SA. The results show that FRE obtained by the two models depends on the subfault size regardless of high-frequency scaling factor (HSF). Considering the HSF, the results obtained by Model 1 and Model 2 are found to be consistent. Then, similar conclusion was obtained from the Northridge earthquake. Finally, we analyzed the reasons and proposed the areas that need to be improved.


2021 ◽  
Author(s):  
Nesrin Yenihayat ◽  
Eser Çaktı ◽  
Karin Şeşetyan

<p>One of the major earthquakes that resulted in intense damages in Istanbul and its neighborhoods took place on 10 July 1894. The 1894 earthquake resulted in 474 losses of life and 482 injuries. Around 21,000 dwellings were damaged, which is a number that corresponds to 1/7 of the total dwellings of the city at that time. Without any doubt, the exact loss of life was higher. Because of the censorship, the exact loss numbers remained unknown. There is still no consensus about its magnitude, epicentral location, and rupture of length. Even though the hardness of studying with historical records due to their uncertainties and discrepancies, researchers should enlighten the source parameters of the historical earthquakes to minimize the effect of future disasters especially for the cities located close to the most active fault lines as Istanbul. The main target of this study is to enlighten possible source properties of the 1894 earthquake with the help of observed damage distribution and stochastic ground motion simulations. In this paper, stochastic based ground motion scenarios will be performed for the 10 July 1894 Istanbul earthquake, using a finite fault simulation approach with a dynamic corner frequency and the results will be compared with our intensity map obtained from observed damage distributions. To do this, in the first step, obtained damage information from various sources has been presented, evaluated, and interpreted. Secondly, we prepared an intensity map associated with the 1894 earthquake based on macro-seismic information, and damage analysis and classification. For generating ground motions with a stochastic finite fault simulation approach, the EXSIM 2012 software has been used. Using EXSIM, several scenarios are modeled with different source, path, and site parameters. Initial source properties have been obtained from findings of our previous study on the simulation of the 26 September 2019 Silivri (Istanbul) earthquake with Mw 5.8. With the comparison of spatial distributions of the ground motion intensity parameters to the obtained damage and intensity maps, we estimate the optimum location and source parameters of the 1894 Earthquake.</p>


2015 ◽  
Vol 744-746 ◽  
pp. 878-883
Author(s):  
Ju Fang Zhong ◽  
Jun Wei Liang ◽  
Zhi Peng Fan ◽  
Luo Long Zhan

Owing to the simulated ground motion energy distribution by stochastic finite-fault method is not reasonable, near-field bedrock strong ground motion acceleration time histories are used to study. Fourier transform is adapted to analysis the variation of the energy accumulation curve with frequency. The results show that the record energy accumulation curve is a steep rise curve, 80% of total energy of the vertical ground motion is concentrated on the 2.5-15Hz, while the horizontal is mainly concentrated on the 2-11Hz. An improved stochastic finite-fault method is proposed by multiplying an amplification factor in some frequency. The results show that multiplying an amplification factor, the simulated acceleration energy accumulation curve matches to the record acceleration energy accumulation curve, and the peak of simulated acceleration response spectrum tends to the record acceleration value.


2015 ◽  
Vol 31 (3) ◽  
pp. 1711-1734 ◽  
Author(s):  
Katsuichiro Goda ◽  
Susumu Kurahashi ◽  
Hadi Ghofrani ◽  
Gail M. Atkinson ◽  
Kojiro Irikura

This study compares the nonlinear response potential of generic inelastic single-degree-of-freedom systems subjected to three sets of ground motion records for the 2011 Tohoku main shock. The compared record sets, all for the same sites, are: (1) observed accelerograms at 48 KiK-net strong motion stations; (2) time-histories simulated from the empirical Green's function method; and (3) time-histories simulated using the stochastic finite-fault method (with multiple sub-events). The adopted techniques can capture a realistic source rupture process involving multiple strong motion generation areas in simulations. Statistical analysis of computed peak ductility demands for the three record sets is conducted via cloud and stripe analyses. Results indicate that for the 2011 Tohoku main shock, different record sets produce similar average trends of the inelastic seismic demand curves. This conclusion is applicable to both cloud and stripe approaches and to structural systems with degrading and pinching hysteresis.


2009 ◽  
Vol 36 (6) ◽  
pp. 991-1000 ◽  
Author(s):  
Gail M. Atkinson

The seismic design provisions of the 2005 National building code of Canada (NBCC) (NRC 2005) describe earthquake ground motions for which structures are to be designed in terms of a uniform hazard spectrum (UHS) having a 2% chance of being exceeded in 50 years. The “target” UHS depends on location and site condition, where site condition is described by a classification scheme based on the time-averaged shear-wave velocity in the top 30 m of the deposit. For some applications, such as dynamic analysis by time history methods, it is useful to have time histories that represent the types of earthquake motions expected and match the target UHS from the NBCC over some prescribed period range. In this study, the stochastic finite-fault method is used to generate earthquake time histories that may be used to match the 2005 NBCC UHS for a range of Canadian sites. Records are provided for site classes A, C, D, and E. They are freely available at www.seismotoolbox.ca .


Sign in / Sign up

Export Citation Format

Share Document