incompressible viscous fluids
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 17)

H-INDEX

11
(FIVE YEARS 2)

Author(s):  
Fan Wu

In this paper, we study a dissipative systems modelling electrohydrodynamics in incompressible viscous fluids. The system consists of the Navier–Stokes equations coupled with a classical Poisson–Nernst–Planck equations. In the three-dimensional case, we establish a global regularity criteria in terms of the middle eigenvalue of the strain tensor in the framework of the anisotropic Lorentz spaces for local smooth solution. The proof relies on the identity for entropy growth introduced by Miller in the Arch. Ration. Mech. Anal. [16].


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Changsheng Dou ◽  
Jialiang Wang ◽  
Weiwei Wang

AbstractWe investigate the effect of (interface) surface tensor on the linear Rayleigh–Taylor (RT) instability in stratified incompressible viscous fluids. The existence of linear RT instability solutions with largest growth rate Λ is proved under the instability condition (i.e., the surface tension coefficient ϑ is less than a threshold $\vartheta _{\mathrm{c}}$ ϑ c ) by the modified variational method of PDEs. Moreover, we find a new upper bound for Λ. In particular, we directly observe from the upper bound that Λ decreasingly converges to zero as ϑ goes from zero to the threshold $\vartheta _{\mathrm{c}}$ ϑ c .


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 621
Author(s):  
Takayuki Kubo ◽  
Yoshihiro Shibata

In this paper, we consider some two phase problems of compressible and incompressible viscous fluids’ flow without surface tension under the assumption that the initial domain is a uniform Wq2−1/q domain in RN (N≥2). We prove the local in the time unique existence theorem for our problem in the Lp in time and Lq in space framework with 2<p<∞ and N<q<∞ under our assumption. In our proof, we first transform an unknown time-dependent domain into the initial domain by using the Lagrangian transformation. Secondly, we solve the problem by the contraction mapping theorem with the maximal Lp-Lq regularity of the generalized Stokes operator for the compressible and incompressible viscous fluids’ flow with the free boundary condition. The key step of our proof is to prove the existence of an R-bounded solution operator to resolve the corresponding linearized problem. The Weis operator-valued Fourier multiplier theorem with R-boundedness implies the generation of a continuous analytic semigroup and the maximal Lp-Lq regularity theorem.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Pitágoras Pinheiro de Carvalho ◽  
Juan Límaco ◽  
Denilson Menezes ◽  
Yuri Thamsten

<p style='text-indent:20px;'>We investigate the null controllability property of systems that mathematically describe the dynamics of some non-Newtonian incompressible viscous flows. The principal model we study was proposed by O. A. Ladyzhenskaya, although the techniques we develop here apply to other fluids having a shear-dependent viscosity. Taking advantage of the Pontryagin Minimum Principle, we utilize a bootstrapping argument to prove that sufficiently smooth controls to the forced linearized Stokes problem exist, as long as the initial data in turn has enough regularity. From there, we extend the result to the nonlinear problem. As a byproduct, we devise a quasi-Newton algorithm to compute the states and a control, which we prove to converge in an appropriate sense. We finish the work with some numerical experiments.</p>


2020 ◽  
Vol 56 (3) ◽  
pp. 2211-2235
Author(s):  
Marc Arnaudon ◽  
Ana Bela Cruzeiro ◽  
Christian Léonard ◽  
Jean-Claude Zambrini

Sign in / Sign up

Export Citation Format

Share Document