helmet sensors
Recently Published Documents


TOTAL DOCUMENTS

2
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 0)

Author(s):  
C Jones ◽  
L Audas ◽  
N Kureshi ◽  
L Kamintsky ◽  
L Fenerty ◽  
...  

Background: Repetitive sub-concussive head impacts have been associated with changes in brain architecture and neurological symptoms. In this study, we examined the association between repetitive sub-concussive impacts, impact burden, and blood brain barrier (BBB) integrity in university football players. Methods: 59 university football players were followed over the 2019 season. Athletes with diagnosed concussion and those sustaining impacts that alerted a sideline impact monitor (relayed by ferroelectric helmet sensors) underwent dynamic contrast-enhanced MRI (DCE-MRI) within one week of injury/alert, and 4 weeks following initial incident. Results: Helmets recorded 2648 impacts over 48 cumulative hours. 8 concussions occurred during the 2019 season (2.82 per 1000 activity hours). On average, athletes with a diagnosed concussion had 55.3 impacts to the front sensor, compared to 14.1 in non-concussed athletes. Athletes who consented to DCE-MRI (n=5) had 10.78% BBB-D within a week of concussion/alert, and 6.77% BBB-D at 4-weeks. Conclusions: We show quantification of BBB integrity relative to head impact burden for the first time. This preliminary study highlights the potential of impact-detecting helmets to provide relevant impact characteristics and offers a foundation for future work on neurological consequences of repetitive sub-concussive impacts.


2017 ◽  
Vol 3 (5) ◽  
pp. e186 ◽  
Author(s):  
Jessica Gill ◽  
Ann Cashion ◽  
Nicole Osier ◽  
Lindsay Arcurio ◽  
Vida Motamedi ◽  
...  

Objective:To explore gene expression after moderate blast exposure (vs baseline) and proteomic changes after moderate- (vs low-) blast exposure.Methods:Military personnel (N = 69) donated blood for quantification of protein level, and peak pressure exposures were detected by helmet sensors before and during a blast training program (10 days total). On day 7, some participants (n = 29) sustained a moderate blast (mean peak pressure = 7.9 psi) and were matched to participants with no/low-blast exposure during the training (n = 40). PAXgene tubes were collected from one training site at baseline and day 10; RNA-sequencing day 10 expression was compared with each participant's own baseline samples to identify genes and pathways differentially expressed in moderate blast-exposed participants. Changes in amyloid precursor protein (APP) from baseline to the day of blast and following 2 days were evaluated. Symptoms were assessed using a self-reported form.Results:We identified 1,803 differentially expressed genes after moderate blast exposure; the most altered network was APP. Significantly reduced levels of peripheral APP were detected the day after the moderate blast exposure and the following day. Protein concentrations correlated with the magnitude of the moderate blast exposure on days 8 and 9. APP concentrations returned to baseline levels 3 days following the blast, likely due to increases in the genetic expression of APP. Onset of concentration problems and headaches occurred after moderate blast.Conclusions:Moderate blast exposure results in a signature biological profile that includes acute APP reductions, followed by genetic expression increases and normalization of APP levels; these changes likely influence neuronal recovery.


Sign in / Sign up

Export Citation Format

Share Document