gaussian mutation operator
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 1)

H-INDEX

0
(FIVE YEARS 0)

2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Xiao Sang ◽  
Xiyu Liu ◽  
Zhe Zhang ◽  
Lin Wang

BBO is one of the new metaheuristic optimization algorithms, which is based on the science of biogeography. It can be used to solve optimization problems through the migration and drift of species between habitats. Many improved BBO algorithms have been proposed, but there were still many shortcomings in global optimization, convergence speed, and algorithm complexity. In response to the above problems, this paper proposes an improved BBO algorithm (DCGBBO) by hierarchical tissue-like P system with triggering ablation rules. Membrane computing is a branch of natural computing that aims to abstract computational models (P system) from the structure and function of biological cells and from the collaboration of cell groups such as organs and tissues. In this paper, firstly, a dynamic crossover migration operator is generated to improve the global search ability and also increase the species diversity. Secondly, a dynamic Gaussian mutation operator is introduced to speed up convergence and improve local search capabilities. To guarantee the correctness and feasibility of the mutation, a unified maximum mutation rate is designed. Finally, a hierarchical tissue-like P system with triggering ablation rules is combined with the DCGBBO algorithm, making use of evolution rules and communication rules to achieve migration and mutation of solutions and reduce computational complexity. In the experiments, eight classic benchmark functions and CEC 2017 benchmark functions are applied to demonstrate the effect of our algorithm. We apply the proposed algorithm to segment four colour pictures, and the results proved to be better compared to other algorithms.



2011 ◽  
Vol 121-126 ◽  
pp. 3736-3740
Author(s):  
Rong Hua Hu ◽  
Pei Huang Lou ◽  
Peng Zhao

The detector sets generated by Real-Valued Negative Selection Algorithm (RNSA) are usually numerous, without optimization, and can not work under real-time condition. Thus, a novel approach of detector generation for RNSA based on Clonal Selection and Neighborhood Search (CSNS-RNSA) is proposed. Clonal selection of the immune mechanism is introduced to implement global search in a quasi-random sequence. The Gaussian mutation operator is proposed to get the global optimal detection sets of N-dimensional space through Neighborhood search. The resulting detector sets achieved a good coverage of non-self space, and also significantly reduced the number of detector sets, thus overcome the limitations of original RNSA. Finally, experiments verify the effectiveness of the algorithm.



Sign in / Sign up

Export Citation Format

Share Document