blazhko effect
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 7)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 258 (1) ◽  
pp. 4
Author(s):  
Nina Hernitschek ◽  
Keivan G. Stassun

Abstract The Vera C. Rubin Observatory will carry out its Legacy Survey of Space and Time (LSST) with a single-exposure depth of r ∼ 24.7 and an anticipated baseline of 10 yr, allowing access to the Milky Way’s old halo not only deeper than, but also with a longer baseline and better cadence than, e.g., PS1 3π. This will make the LSST ideal to study populations of variable stars such as RR Lyrae stars (RRL). Here, we address the question of observing strategy optimization of LSST, as survey footprint definition, single-visit exposure time, as well as the cadence of repeat visits in different filters are yet to be finalized. We present metrics used to assess the impact of different observing strategies on the reliable detectability and classification of standard candle variable stars, including detection of amplitude, period, and phase modulation effects of RRL (the so-called Blazhko effect), by evaluating metrics for simulated potential survey designs. So far, due to the depths and cadences of typical all-sky surveys, it has been nearly impossible to study this effect on a larger sample. All-sky surveys with relatively few observations over a moderately long baseline allow only for fitting phase-folded RRL light curves, thus integrating over the complete survey length and hiding any information regarding possible period or phase modulation during the survey. On the other hand, surveys with cadences fit to detect slightly changing light curves usually have a relatively small footprint. LSST’s survey strategy, however, will allow for studying variable stars in a way that makes population studies possible.


Author(s):  
Emese Plachy ◽  
Róbert Szabó

The unprecedented photometric precision along with the quasi-continuous sampling provided by the Kepler space telescope revealed new and unpredicted phenomena that reformed and invigorated RR Lyrae star research. The discovery of period doubling and the wealth of low-amplitude modes enlightened the complexity of the pulsation behavior and guided us toward nonlinear and nonradial studies. Searching and providing theoretical explanation for these newly found phenomena became a central question, as well as understanding their connection to the oldest enigma of RR Lyrae stars, the Blazhko effect. We attempt to summarize the highest impact RR Lyrae results based on or inspired by the data of the Kepler space telescope both from the nominal and from the K2 missions. Besides the three most intriguing topics, the period doubling, the low-amplitude modes, and the Blazhko effect, we also discuss the challenges of Kepler photometry that played a crucial role in the results. The secrets of these amazing variables, uncovered by Kepler, keep the theoretical, ground-based, and space-based research inspired in the post-Kepler era, since light variation of RR Lyrae stars is still not completely understood.


2020 ◽  
Vol 46 (10) ◽  
pp. 691-701
Author(s):  
L. N. Berdnikov ◽  
A. Yu. Kniazev ◽  
A. K. Dambis ◽  
V. V. Kravtsov

2020 ◽  
Vol 494 (1) ◽  
pp. 1237-1249
Author(s):  
M Skarka ◽  
Z Prudil ◽  
J Jurcsik

ABSTRACT The number of stars observed by the Optical Gravitational Lensing Experiment (OGLE) project in the Galactic bulge offers an invaluable chance to study RR Lyrae stars in a statistical manner. We used data of 3141 fundamental-mode RR Lyrae stars showing the Blazhko effect observed in OGLE-IV to investigate a possible connection between modulation amplitudes and periods, light curve, and pulsation characteristics. We found that there is no simple monotonic correlation between any combination of two parameters concerning the Blazhko and pulsation amplitudes, periods, and the shape of the light curves. There are only systematic limits. There is a bottom limit of the modulation period with respect to the pulsation period. We also found that the possible range of modulation amplitudes decreases with increasing pulsation period, which could point towards that the Blazhko effect is suppressed in cooler, larger, more luminous, and less metal abundant bulge RR Lyrae stars. Our investigation revealed that the distribution of the modulation periods can be described with two populations of stars with the mean modulation periods of 48 and 186  d. There is a certain region with a low density of the modulated stars, which we call the Blazhko valley, in the pulsation period–modulation period plane. Based on the similarity of the modulation envelopes, basically every star can be assigned to one of six morphological classes. The double modulation was found in 25 per cent of the studied stars. Only 6.3 per cent of modulated stars belong to the Oosterhoff group II.


2020 ◽  
Vol 494 (3) ◽  
pp. 3212-3226 ◽  
Author(s):  
M A Yepez ◽  
A Arellano Ferro ◽  
D Deras

ABSTRACT We present an analysis of VI CCD time-series photometry of the Oo II type globular cluster M92. The variable star population of the cluster is studied with the aim of revising their classifications, identifications, frequency spectra, and to select indicators of the parental cluster metallicity and distance. The Fourier decomposition of RR Lyrae light curves lead to the estimation of mean [Fe/H]spec = −2.20 ± 0.18 and distance of 8.3 ± 0.2 kpc. Four new variables are reported: one RRd (V40), a multimode SX Phe (V41), an SR (V42), and one RRc (F1) that is most likely not a cluster member. The AC nature of V7 is confirmed. The double mode nature of the RRc star V11 is not confirmed and its amplitude modulations are most likely due to the Blazhko effect. Two modes are found in the known RRc variable V13. It is argued that the variable V30, previously classified as RRab is, in fact, a BL Her-type star not belonging to the cluster. Using the Gaia-DR2 proper motions, we identified 5012 stars in the field of the cluster, which are very likely cluster members, and for which we possess photometry, enabling the production of a refined colour–magnitude diagram. This also allowed us to identify a few variable stars that do not belong to the cluster. The RR Lyrae pulsation modes on the HB are cleanly separated by the first overtone red edge, a common feature in all Oo II-type clusters.


Author(s):  
Xiao-Wei Duan ◽  
Xiao-Dian Chen ◽  
Li-Cai Deng ◽  
Fan Yang ◽  
Chao Liu ◽  
...  

Steps toward the nature inside RR Lyrae variables can not only improve our understanding of variable stars but also innovate the precision when we use them as tracers to map the structure of the universe. In this work, we develop a hand-crafted one-dimensional pattern recognition pipeline to fetch out the "first apparitions", the most prominent observational characteristic of shock. We report the first detection of hydrogen emission lines in the first-overtone and multi-mode RR Lyrae variables. We find that there is an anti-correlation between the intensity and the radial velocity of the emission signal, which is possibly caused by opacity changing in the helium ionization zone. Moreover, we find one RRd star with hydrogen emission that possibly shows Blazhko-type modulations. According to our discoveries, with an enormous volume of upcoming data releases of variable stars and spectra, it may become possible to build up the bridge between shock waves and big problems like the Blazhko effect in non-fundamental mode RR Lyrae stars.


2017 ◽  
Vol 30 (0) ◽  
pp. 140-142
Author(s):  
S. N. Udovichenko ◽  
L. E. Keir
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document