gaia dr2
Recently Published Documents


TOTAL DOCUMENTS

525
(FIVE YEARS 422)

H-INDEX

31
(FIVE YEARS 23)

Author(s):  
Huiyan Zhang ◽  
Yong Yu ◽  
Dan Yan ◽  
Kai Tang ◽  
Rongchuan Qiao

Abstract With unique orbital and physical characteristics, Triton is a very important target since it may contain information of the origin and evolution of the solar system. Besides space explorations, ground-based observations over long time also play key role on research of Triton. High-precision positions of Triton obtained from ground telescopes are of great significance for studying its orbital evolution and inverting the physical properties of Neptune. As a long-term observational target, Triton has been observed by the 1.56 m telescope of Shanghai Astronomical Observatory since 1996. In this paper, based on our AAPPDI software and with Gaia DR2 as the reference catalogue, 604 positions of Triton during 2010-2014 are calculated, with standard errors of $19mas-88mas$. A comparison between our results and the ephemeris (DE431+nep096) is also given.


2021 ◽  
Vol 34 ◽  
pp. 114-118
Author(s):  
S.V. Shatokhina ◽  
L.V. Kazantseva

For more than 50 years, the continuous photographic observations of asteroids have been carried outwith telescopes of the Astronomical Observatory of the Taras Shevchenko National University of Kyiv and the Main Astronomical Observatory of the National Academy of Sciences of Ukraine. About 3,000 photographic plates were obtained, some of which were exposed in 1908. We collected the data on more than 5,500 positions and magnitudes of asteroids on these astroplates taking into account all results of the processing of observations available in various publications and in the Minor Planet Center database. All positional data were compared with JPL ephemeris and analyzed. From different series of asteroid observations the values of positional accuracy were obtained, depending on the methods of measuring and processing the plates and reference catalogs of stars. In order to systematically improve the obtained asteroid positions, we evaluated the possibilities of reprocessing some of the earliest asteroid observations applying the modern star high accuracy catalogs. Using the Tycho-2, Gaia DR2, and Gaia EDR3 as the reference catalogs, the 590 astroplates exposed on the MAO NASU Double Long-Focus Astrograph (DLA) in 1952-1986 were reprocessed based on old plate measurements. All newly determined and previous original asteroid positions were compared with the JPL ephemeris. The comparison results show an improvement in the systematic and random components of the accuracy of coordinates for new positions of asteroids. When comparing the new positions of the asteroids  determined in the Tycho-2 and Gaia catalog systems, no significant changes in accuracy were found.


2021 ◽  
Vol 34 ◽  
pp. 100-105
Author(s):  
V. Andruk ◽  
L. Pakuliak ◽  
O. Yizhakievych ◽  
S. Shatokhina

The process of treatment of about 500 digitized plates has started in MAO NAS of Ukraine. Plates were taken with the Tautenburg 2m Schmidt telescope in 1963-1989. Linear dimensions of plates are 24x24 cm with a working field of 3.3x3.3 degrees and a scale of 51.4 "/ mm. Astronegatives were digitized on the Tautenburg Plate Scanner in five strips with linear dimensions of 5 400x23 800 px. The software developed in MAO NAS of Ukraine for the image processing of these scans takes into account the horizontal overlap and the vertical offset of strips. The photometric range of fixed objects is 12 magnitudes, around V = 7 m - 19 m , due to the separation of objects into faint and bright parts by their images’ diameters. Positions of stars and other fixed objects are obtained in the GAIA DR2 reference system. Magnitudes are defined in the V-band of the Johnson color system. The resulted positional accuracy defined from 180 plates’ processing is σ RA,DEC = 0.10"for both coordinates, photometric error on the whole range of magnitudes is σ V = 0.14 m . The convergence of resulted magnitudes with ones from photoelectric standards’ data is 0.19 m . In parallel with image processing and plate data reduction, the search for minor planets’ images was carried out. Nine positions and magnitudes of 4 asteroids registered on the plates obtained in 1963-1965 were defined and used for further analysis.


2021 ◽  
Vol 34 ◽  
pp. 65-69
Author(s):  
I.A. Usenko ◽  
A.Yu. Kniazev ◽  
A.S. Miroshnichenko ◽  
S. Danford ◽  
V.V. Kovtyukh ◽  
...  

Confident main-sequence (MS) members of the Collinder 394 open cluster are perfect objects to check the correctness of their distances, obtained from the GAIA GR2 (2018) catalogue. The differences in the distances to the open cluster Collinder 394, determined by photometry and from the GAIA parallaxes have raised doubts about the correctness of the latter. Therefore we used spectroscopically determined T eff and loggvalues for these stars from Usenko et al. (2019) and tried to solve the inverse problem: determine radii of these stars using the derived distances and calibrations “T eff - radius” for MS stars and compare with similar ones. For this purpose we used the calibrations from Torres et al. (2010), based on the nearest MS eclipsing binaries and compilations for MS stars from Mamajek (2018). As a result, we obtained relationships that connect T eff , logg, radii, masses, and distances for the confident Collinder 394 MS stars. We have confirmed the correctness of the GAIA DR2 (2018) distances for these stars and determined their radii and masses. The latter estimates turned out to be close to those of the evolutionary masses calculated by the PARSEC model


2021 ◽  
Vol 923 (1) ◽  
pp. 129
Author(s):  
Karl Jaehnig ◽  
Jonathan Bird ◽  
Kelly Holley-Bockelmann

Abstract Open clusters are groups of stars that form at the same time, making them an ideal laboratory to test theories of star formation, stellar evolution, and dynamics in the Milky Way disk. However, the utility of an open cluster can be limited by the accuracy and completeness of its known members. Here, we employ a “top-down” technique, Extreme Deconvolution Gaussian Mixture Models (XDGMMs), to extract and evaluate known open clusters from Gaia DR2 by fitting the distribution of stellar parallax and proper motion along a line of sight. Extreme deconvolution techniques can recover the intrinsic distribution of astrometric quantities, accounting for the full covariance matrix of the errors; this allows open cluster members to be identified even when presented with relatively uncertain measurement data. To date, open cluster studies have only applied extreme deconvolution to specialized searches for individual systems. We use XDGMMs to characterize the open clusters reported by Ahumada & Lapasset and are able to recover 420 of the 426 open clusters therein (98.1%). Our membership list contains the overwhelming majority (>95%) of previously known cluster members. We also identify a new, significant, and relatively faint cluster member population and validate their membership status using Gaia eDR3. We report the fortuitous discovery of 11 new open cluster candidates within the lines of sight we analyzed. We present our technique, as well as its advantages and challenges, and publish our membership lists and updated cluster parameters.


2021 ◽  
Vol 257 (2) ◽  
pp. 46
Author(s):  
Diego Godoy-Rivera ◽  
Marc H. Pinsonneault ◽  
Luisa M. Rebull

Abstract The period versus mass diagrams (i.e., rotational sequences) of open clusters provide crucial constraints for angular momentum evolution studies. However, their memberships are often heavily contaminated by field stars, which could potentially bias the interpretations. In this paper, we use data from Gaia DR2 to reassess the memberships of seven open clusters with ground- and space-based rotational data, and present an updated view of stellar rotation as a function of mass and age. We use the Gaia astrometry to identify the cluster members in phase space, and the photometry to derive revised ages and place the stars on a consistent mass scale. Applying our membership analysis to the rotational sequences reveals that: (1) the contamination in clusters observed from the ground can reach up to ∼35%; (2) the overall fraction of rotational outliers decreases substantially when the field contaminants are removed, but some outliers persist; (3) there is a sharp upper edge in the rotation periods at young ages; (4) at young ages, stars in the 1.0–0.6M ⊙ range inhabit a global maximum of rotation periods, potentially providing an optimal window for habitable planets. Additionally, we see clear evidence for a strongly mass-dependent spin-down process. In the regime where rapid rotators are leaving the saturated domain, the rotational distributions broaden (in contradiction with popular models), which we interpret as evidence that the torque must be lower for rapid rotators than for intermediate ones. The cleaned rotational sequences from ground-based observations can be as constraining as those obtained from space.


Author(s):  
W. G. Peng ◽  
H. F. Song ◽  
G. Meynet ◽  
A. Maeder ◽  
F. Barblan ◽  
...  

2021 ◽  
Vol 922 (1) ◽  
pp. 8
Author(s):  
Qing-Zeng Yan ◽  
Ji Yang ◽  
Yang Su ◽  
Yan Sun ◽  
Ye Xu ◽  
...  

Abstract The principle of the background-eliminated extinction-parallax (BEEP) method is examining the extinction difference between on- and off-cloud regions to reveal the extinction jump caused by molecular clouds, thereby revealing the distance in complex dust environments. The BEEP method requires high-quality images of molecular clouds and high-precision stellar parallaxes and extinction data, which can be provided by the Milky Way Imaging Scroll Painting (MWISP) CO survey and the Gaia DR2 catalog, as well as supplementary A V extinction data. In this work, the BEEP method is further improved (BEEP-II) to measure molecular cloud distances in a global search manner. Applying the BEEP-II method to three regions mapped by the MWISP CO survey, we collectively measured 238 distances for 234 molecular clouds. Compared with previous BEEP results, the BEEP-II method measures distances efficiently, particularly for those molecular clouds with large angular size or in complicated environments, making it suitable for distance measurements of molecular clouds in large samples.


2021 ◽  
Vol 922 (1) ◽  
pp. 49
Author(s):  
Harshil Kamdar ◽  
Charlie Conroy ◽  
Yuan-Sen Ting ◽  
Kareem El-Badry

Abstract The Galactic disk is expected to be spatially and kinematically clustered on many scales due to both star formation and the Galactic potential. In this work we calculate the spatial and kinematic two-point correlation functions (TPCF) using a sample of 1.7 × 106 stars with radial velocities from Gaia DR2. Clustering is detected on spatial scales of 1–300 pc and a velocity scale of 15 km s−1. After removing bound structures, the data have a power-law index of γ ≈ −1 for 1 pc < Δr < 100 pc and γ ≲ −1.5 for Δr > 100 pc. We interpret these results with the aid of a star-by-star simulation of the Galaxy, in which stars are born in clusters orbiting in a realistic potential that includes spiral arms, a bar, and giant molecular clouds. We find that the simulation largely agrees with the observations at most spatial and kinematic scales. In detail, the TPCF in the simulation is shallower than the data at ≲20 pc scales, and steeper than the data at ≳30 pc. We also find a persistent clustering signal in the kinematic TPCF for the data at large Δv (>5 km s−1) that is not present in the simulations. We speculate that this mismatch between observations and simulations may be due to two processes: hierarchical star formation and transient spiral arms. We also predict that the addition of ages and metallicities measured with a precision of 50% and 0.05 dex, respectively, will enhance the clustering signal beyond current measurements.


2021 ◽  
Vol 921 (1) ◽  
pp. 42
Author(s):  
D. Stern ◽  
S. G. Djorgovski ◽  
A. Krone-Martins ◽  
D. Sluse ◽  
L. Delchambre ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document