gravitational lensing
Recently Published Documents


TOTAL DOCUMENTS

1928
(FIVE YEARS 409)

H-INDEX

87
(FIVE YEARS 14)

Author(s):  
Siddharth Mishra-Sharma

Abstract Astrometry---the precise measurement of positions and motions of celestial objects---has emerged as a promising avenue for characterizing the dark matter population in our Galaxy. By leveraging recent advances in simulation-based inference and neural network architectures, we introduce a novel method to search for global dark matter-induced gravitational lensing signatures in astrometric datasets. Our method based on neural likelihood-ratio estimation shows significantly enhanced sensitivity to a cold dark matter population and more favorable scaling with measurement noise compared to existing approaches based on two-point correlation statistics, establishing machine learning as a powerful tool for characterizing dark matter using astrometric data.


2022 ◽  
Vol 105 (2) ◽  
Author(s):  
Slava G. Turyshev ◽  
Viktor T. Toth

2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Hrishikesh Chakrabarty ◽  
Debasish Borah ◽  
Ahmadjon Abdujabbarov ◽  
Daniele Malafarina ◽  
Bobomurat Ahmedov

AbstractWe study the effects of gravitational lensing on neutrino oscillations in the $$\gamma $$ γ -spacetime which describes a static, axially-symmetric and asymptotically flat solution of the Einstein’s field equations in vacuum. Using the quantum-mechanical treatment for relativistic neutrinos, we calculate the phase of neutrino oscillations in this spacetime by considering both radial and non-radial propagation. We show the dependence of the oscillation probability on the absolute neutrino masses, which in the two-flavour case also depends upon the sign of mass squared difference, in sharp contrast with the well-known results of vacuum oscillation in flat spacetime. We also show the effects of the deformation parameter $$\gamma $$ γ on neutrino oscillations and reproduce previously known results for the Schwarzschild metric. We then extend these to a more realistic three flavours neutrino scenario and study the effects of the parameter $$\gamma $$ γ and the lightest neutrino mass while using best fit values of neutrino oscillation parameters.


Universe ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 19
Author(s):  
Giulia Cusin ◽  
Ruth Durrer ◽  
Irina Dvorkin

In this paper, we studied the gravitational lensing of gravitational wave events. The probability that an observed gravitational wave source has been (de-)amplified by a given amount is a detector-dependent quantity which depends on different ingredients: the lens distribution, the underlying distribution of sources and the detector sensitivity. The main objective of the present work was to introduce a semi-analytic approach to study the distribution of the magnification of a given source population observed with a given detector. The advantage of this approach is that each ingredient can be individually varied and tested. We computed the expected magnification as both a function of redshift and of the observedsource luminosity distance, which is the only quantity one can access via observation in the absence of an electromagnetic counterpart. As a case study, we then focus on the LIGO/Virgo network and on strong lensing (μ>1).


2021 ◽  
Vol 53 (3) ◽  
pp. 428-250
Author(s):  
Premana Wardayanti Premadi ◽  
Dading Hadi Nugroho ◽  
Anton Timur Jaelani

We report the results of combined analyses of X-ray and optical data of two galaxy clusters, CL 0024+1654 and RX J0152.7−1357 at redshift z = 0.395 and z = 0.830, respectively, offering a holistic physical description of the two clusters. Our X-ray analysis yielded temperature and density profiles of the gas in the intra-cluster medium (ICM). Using optical photometric and spectroscopic data, complemented with mass distribution from a gravitational lensing study, we investigated any possible correlation between the physical properties of the galaxy members, i.e. their color, morphology, and star formation rate (SFR), and their environments. We quantified the properties of the environment around each galaxy by galaxy number density, ICM temperature, and mass density. Although our results show that the two clusters exhibit a weaker correlation compared to relaxed clusters, it still confirms the significant effect of the ICM on the SFR in the galaxies. The close relation between the physical properties of galaxies and the condition of their immediate environment found in this work indicates the locality of galaxy evolution, even within a larger bound system such as a cluster. Various physical mechanisms are suggested to explain the relation between the properties of galaxies and their environment.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 502
Author(s):  
Marek Biesiada ◽  
Sreekanth Harikumar

Continuous gravitational waves are analogous to monochromatic light and could therefore be used to detect wave effects such as interference or diffraction. This would be possible with strongly lensed gravitational waves. This article reviews and summarises the theory of gravitational lensing in the context of gravitational waves in two different regimes: geometric optics and wave optics, for two widely used lens models such as the point mass lens and the Singular Isothermal Sphere (SIS). Observable effects due to the wave nature of gravitational waves are discussed. As a consequence of interference, GWs produce beat patterns which might be observable with next generation detectors such as the ground based Einstein Telescope and Cosmic Explorer, or the space-borne LISA and DECIGO. This will provide us with an opportunity to estimate the properties of the lensing system and other cosmological parameters with alternative techniques. Diffractive microlensing could become a valuable method of searching for intermediate mass black holes formed in the centres of globular clusters. We also point to an interesting idea of detecting the Poisson–Arago spot proposed in the literature.


Author(s):  
H Netzel ◽  
P Pietrukowicz ◽  
I Soszyński ◽  
M Wrona

Abstract We have performed a frequency analysis of 10,092 δ Scuti-type stars detected in the fourth phase of the Optical Gravitational Lensing Experiment (OGLE) towards the Galactic bulge, which is the most numerous homogeneous sample of δ Scuti stars observed so far. The main goal was to search for stars pulsating in at least two radial modes simultaneously. We have found 3083 candidates for such stars, which is the largest set obtained to date. Among them, 2655 stars pulsate in two radial modes, 414 stars pulsate in three radial modes, and 14 stars pulsate in four radial modes at the same time. We report the identification of 221 δ Scuti stars pulsating in the fundamental mode, first overtone, and third overtone simultaneously. We show the most populated Petersen and Bailey diagrams and discuss statistical properties of the identified frequencies based on this numerous sample. Additionally, we present theoretical predictions of period ratios for δ Scuti stars pulsating in overtones from the fourth to the seventh.


Sign in / Sign up

Export Citation Format

Share Document