specific product yield
Recently Published Documents


TOTAL DOCUMENTS

1
(FIVE YEARS 1)

H-INDEX

0
(FIVE YEARS 0)

2019 ◽  
Vol 38 (3) ◽  
pp. 322-331
Author(s):  
Mehmet Ünsal ◽  
Işıl Işık-Gülsaç ◽  
Ersin Üresin ◽  
Mustafa Salih Budak ◽  
Kader Özgür-Büyüksakallı ◽  
...  

The aim of this study is to present the optimum operating conditions for reducing energy consumption in the process of obtaining bio-oil from the mixture of sawdust, waste lubricating oil, lime, and commercial catalyst. In the study where the catalytic pressureless depolymerisation (also called Katalytische Drucklose Verölung – KDV) was applied, the operating conditions were analysed with response surface methodology. According to the analysis of variance results, a mathematical model was obtained for specific product yield (bio-oil amount/energy consumption g kWe−1). Effects of temperature (260°C–290°C), catalyst rate (1–2 wt.%) and reaction time (0.5–1 h) were investigated. The optimum conditions for the three independent variables (temperature, catalyst rate, reaction time) were 279 ± 2°C, 2 wt.% and 0.5 h, respectively. Maximum specific product yield was obtained as 970.17 g kWe−1. While the reaction time was the most effective regarding the amount of bio-oil obtained at 1 kWe energy consumption, the temperature was found to be the least effective. In addition to these, bio-oil obtained under optimum conditions were characterised and compared with standard diesel specifications.


Sign in / Sign up

Export Citation Format

Share Document