tracking objectives
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 2)

H-INDEX

2
(FIVE YEARS 0)

Author(s):  
Radouane Majdoul ◽  
Abdelwahed Touati ◽  
Abderrahmane Ouchatti ◽  
Abderrahim Taouni ◽  
Elhassane Abdelmounim

<p><span>In the present paper, an efficient and performant nonlinear regulator is designed for the control of the pulse width modulation (PWM) voltage inverter that can be used in a standalone photovoltaic microgrid. The main objective of our control is to produce a sinusoidal voltage output signal with amplitude and frequency that are fixed by the reference signal for different loads including linear or nonlinear types. A comparative performance study of controllers based on linear and non-linear techniques such as backstepping, sliding mode, and proportional integral derivative (PID) is developed to ensure the best choice among these three types of controllers. The performance of the system is investigated and compared under various operating conditions by simulations in the MATLAB/Simulink environment to demonstrate the effectiveness of the control methods. Our investigation shows that the backstepping controller can give better performance than the sliding mode and PID controllers. The accuracy and efficiency of the proposed backstepping controller are verified experimentally in terms of tracking objectives.</span></p>


Author(s):  
Hafsa Hamidane ◽  
Samira El Faiz ◽  
Mohammed Guerbaoui ◽  
Abdelali Ed-Dahhak ◽  
Abdeslam Lachhab ◽  
...  

In this paper, a constrained discete model predictive control (CDMPC) strategy for a greenhouse inside temperature is presented. To describe the dynamics of our system’s inside temperature, an experimental greenhouse prototype is engaged. For the mathematical modeling, a state space form which fits properly the acquired data of the greenhouse temperature dynamics is identified using the subspace system identification (N4sid) algorithm. The obtained model is used in order to develop the CDMPC starategy which role is to select the best control moves based on an optimization procedure under the constraints on the control notion. For efficient evaluation of the proposed control approach Matlab/Simulink and Yalmip optimization toolbox are used for algorithm and blocks implementation. The simulation results confirm the accuracy of the controller that garantees both the control and the reference tracking objectives.


2013 ◽  
Vol 25 (1) ◽  
pp. 1-25 ◽  
Author(s):  
M. ANNUNZIATO ◽  
A. BORZÌ

A new control strategy for a class of piecewise deterministic processes (PDP) is presented. In this class, PDP stochastic processes consist of ordinary differential equations that are subject to random switches corresponding to a discrete Markov process. The proposed strategy aims at controlling the probability density function (PDF) of the PDP. The optimal control formulation is based on the hyperbolic Fokker–Planck system that governs the time evolution of the PDF of the PDP and on tracking objectives of terminal configuration with a target PDF. The corresponding optimization problems are formulated as a sequence of open-loop hyperbolic optimality systems following a model predictive control framework. These systems are discretized by first-order schemes that guarantee positivity and conservativeness of the numerical PDF solution. The effectiveness of the proposed computational control framework is validated considering PDP with dichotomic noise.


Sign in / Sign up

Export Citation Format

Share Document