path space
Recently Published Documents


TOTAL DOCUMENTS

205
(FIVE YEARS 26)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Vol 210 ◽  
pp. 112387
Author(s):  
Li-Juan Cheng ◽  
Erlend Grong ◽  
Anton Thalmaier

2021 ◽  
Vol 40 (4) ◽  
pp. 1-15
Author(s):  
Cheng Zhang ◽  
Zihan Yu ◽  
Shuang Zhao

2021 ◽  
Vol 40 (4) ◽  
pp. 1-15
Author(s):  
Cheng Zhang ◽  
Zihan Yu ◽  
Shuang Zhao

2021 ◽  
Vol 40 (4) ◽  
pp. 139-151
Author(s):  
Philippe Weier ◽  
Marc Droske ◽  
Johannes Hanika ◽  
Andrea Weidlich ◽  
Jiří Vorba
Keyword(s):  

Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 499
Author(s):  
Francis J. Pinski

To sample from complex, high-dimensional distributions, one may choose algorithms based on the Hybrid Monte Carlo (HMC) method. HMC-based algorithms generate nonlocal moves alleviating diffusive behavior. Here, I build on an already defined HMC framework, hybrid Monte Carlo on Hilbert spaces (Beskos, et al. Stoch. Proc. Applic. 2011), that provides finite-dimensional approximations of measures π, which have density with respect to a Gaussian measure on an infinite-dimensional Hilbert (path) space. In all HMC algorithms, one has some freedom to choose the mass operator. The novel feature of the algorithm described in this article lies in the choice of this operator. This new choice defines a Markov Chain Monte Carlo (MCMC) method that is well defined on the Hilbert space itself. As before, the algorithm described herein uses an enlarged phase space Π having the target π as a marginal, together with a Hamiltonian flow that preserves Π. In the previous work, the authors explored a method where the phase space π was augmented with Brownian bridges. With this new choice, π is augmented by Ornstein–Uhlenbeck (OU) bridges. The covariance of Brownian bridges grows with its length, which has negative effects on the acceptance rate in the MCMC method. This contrasts with the covariance of OU bridges, which is independent of the path length. The ingredients of the new algorithm include the definition of the mass operator, the equations for the Hamiltonian flow, the (approximate) numerical integration of the evolution equations, and finally, the Metropolis–Hastings acceptance rule. Taken together, these constitute a robust method for sampling the target distribution in an almost dimension-free manner. The behavior of this novel algorithm is demonstrated by computer experiments for a particle moving in two dimensions, between two free-energy basins separated by an entropic barrier.


Author(s):  
Francis J. Pinski

To sample from complex, high-dimensional distributions, one may choose algorithms based on the Hybrid Monte Carlo (HMC) method. HMC-based algorithms generate nonlocal moves alleviating diffusive behavior. Here, I build on an already defined HMC framework, Hybrid Monte Carlo on Hilbert spaces [A. Beskos, F.J. Pinski, J.-M. Sanz-Serna and A.M. Stuart, Stoch. Proc. Applic. 121, 2201 - 2230 (2011); doi:10.1016/j.spa.2011.06.003] that provides finite-dimensional approximations of measures π which have density with respect to a Gaussian measure on an infinite-dimensional Hilbert (path) space. In all HMC algorithms, one has some freedom to choose the mass operator. The novel feature of the algorithm described in this article lies in the choice of this operator. This new choice defines a Markov Chain Monte Carlo (MCMC) method which is well defined on the Hilbert space itself. As before, the algorithm described herein uses an enlarged phase space Π having the target π as a marginal, together with a Hamiltonian flow that preserves Π. In the previous method, the phase space π was augmented with Brownian bridges. With the new choice for the mass operator, π is augmented with Ornstein-Uhlenbeck (OU) bridges. The covariance of Brownian bridges grows with its length, which has negative effects on the Metropolis-Hasting acceptance rate. This contrasts with the covariance of OU bridges which is independent of the path length. The ingredients of the new algorithm include the definition of the mass operator, the equations for the Hamiltonian flow, the (approximate) numerical integration of the evolution equations, and finally the Metropolis-Hastings acceptance rule. Taken together, these constitute a robust method for sampling the target distribution in an almost dimension-free manner. The behavior of this novel algorithm is demonstrated by computer experiments for a particle moving in two dimensions, between two free-energy basins separated by an entropic barrier.


Author(s):  
Jeremiah Birrell ◽  
Markos A. Katsoulakis ◽  
Luc Rey-Bellet

Quantifying the impact of parametric and model-form uncertainty on the predictions of stochastic models is a key challenge in many applications. Previous work has shown that the relative entropy rate is an effective tool for deriving path-space uncertainty quantification (UQ) bounds on ergodic averages. In this work we identify appropriate information-theoretic objects for a wider range of quantities of interest on path-space, such as hitting times and exponentially discounted observables, and develop the corresponding UQ bounds. In addition, our method yields tighter UQ bounds, even in cases where previous relative-entropy-based methods also apply, e.g., for ergodic averages. We illustrate these results with examples from option pricing, non-reversible diffusion processes, stochastic control, semi-Markov queueing models, and expectations and distributions of hitting times.


Sign in / Sign up

Export Citation Format

Share Document