central pattern generator model
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 5)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
Yi Fang ◽  
Jie Hu ◽  
Jin Qi ◽  
Wenhai Liu ◽  
Weiming Wang ◽  
...  

Planning efficient trajectories is an essential task in most automated robotic applications. The execution time and smoothness are usually important considerations for economic and safety reasons. A novel method to generate a trigonometric frequency central pattern generator trajectory is presented in this paper for cyclic point-to-point tasks of industrial robotic manipulators. The proposed method is biologically motivated by the concept of central pattern generator, which is a special neural circuit underlying most rhythmic activities in living beings. A modified central pattern generator model with simple network structure is developed for yielding the desired joint trajectories of robots. An important property of this technique lies in the fact that stable online trajectory transition between different paths is enabled by simply adjusting the central pattern generator control parameters. Moreover, kinematic constraints of the robot can be taken into account for optimizing the robot motion instead of setting a priori the execution time. Two examples of the pick-and-place operation, which is a typical cyclic point-to-point task, are used to illustrate the validity of the method. The results of simulation indicate that the proposed method is capable of producing smooth and time-optimal trajectories, which have also been compared with those yielded by other trajectory planning approaches found in the scientific literature.


Author(s):  
Dariusz Grzelczyk ◽  
Olga Szymanowska ◽  
Jan Awrejcewicz

The goal of the study was to perform both kinematic and dynamic simulation of an octopod robot walking on a flat and hard surface. To drive robot legs, different non-linear mechanical oscillators were employed as central pattern generators. Aside from using some well-known oscillators, a new model was proposed. Time series of robot’s kinematic and dynamic locomotion parameters were computed and discussed. Displacement and velocity of the centre of gravity of the robot, ground reaction forces acting on the robot legs, as well as some aspects of energy consumption of a walking robot were analysed to assess the central pattern generators. The obtained kinematic and dynamic parameters showed some advantages of the applied generator. In particular, the gait of the robot was most stable when the robot was driven by the proposed central pattern generator model.


Sign in / Sign up

Export Citation Format

Share Document