cyclic edge connectivity
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 1)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
Sinan G. Aksoy ◽  
Mark Kempton ◽  
Stephen J. Young




10.37236/4458 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Edita Rollová ◽  
Michael Schubert ◽  
Eckhard Steffen

The presented paper studies the flow number $F(G,\sigma)$ of flow-admissible signed graphs $(G,\sigma)$ with two negative edges. We restrict our study to cubic graphs, because for each non-cubic signed graph $(G,\sigma)$ there is a set of cubic graphs obtained from $(G,\sigma)$ such that the flow number of $(G,\sigma)$ does not exceed the flow number of any of the cubic graphs. We prove that $F(G,\sigma) \leq 6$ if $(G,\sigma)$ contains a bridge, and $F(G,\sigma) \leq 7$ in general. We prove better bounds, if there is a cubic graph $(H,\sigma_H)$ obtained from $(G,\sigma)$ which satisfies some additional conditions. In particular, if $H$ is bipartite, then $F(G,\sigma) \leq 4$ and the bound is tight. If $H$ is $3$-edge-colorable or critical or if it has a sufficient cyclic edge-connectivity, then $F(G,\sigma) \leq 6$. Furthermore, if Tutte's $5$-Flow Conjecture is true, then $(G,\sigma)$ admits a nowhere-zero $6$-flow endowed with some strong properties.



2017 ◽  
Vol 40 (1) ◽  
pp. 144-149
Author(s):  
Shengzhang Ren ◽  
Tingzeng Wu ◽  
Heping Zhang






2009 ◽  
Vol 309 (13) ◽  
pp. 4555-4563 ◽  
Author(s):  
Bing Wang ◽  
Zhao Zhang


Sign in / Sign up

Export Citation Format

Share Document