large deformation
Recently Published Documents


TOTAL DOCUMENTS

2815
(FIVE YEARS 571)

H-INDEX

87
(FIVE YEARS 13)

Author(s):  
Mina Karimi ◽  
Mehrdad Massoudi ◽  
Noel Walkington ◽  
Matteo Pozzi ◽  
Kaushik Dayal

2022 ◽  
Author(s):  
Mina Karimi ◽  
Mehrdad Massoudi ◽  
Noel Walkington ◽  
Matteo Pozzi ◽  
Kaushik Dayal

The modeling of coupled fluid transport and deformation in a porous medium is essential to predict the various geomechanical process such as CO2 sequestration, hydraulic fracturing, and so on. Current applications of interest, for instance, that include fracturing or damage of the solid phase, require a nonlinear description of the large deformations that can occur. This paper presents a variational energy-based continuum mechanics framework to model large-deformation poroelasticity. The approach begins from the total free energy density that is additively composed of the free energy of the components. A variational procedure then provides the balance of momentum, fluid transport balance, and pressure relations. A numerical approach based on finite elements is applied to analyze the behavior of saturated and unsaturated porous media using a nonlinear constitutive model for the solid skeleton. Examples studied include the Terzaghi and Mandel problems; a gas-liquid phase-changing fluid; multiple immiscible gases; and unsaturated systems where we model injection of fluid into soil. The proposed variational approach can potentially have advantages for numerical methods as well as for combining with data-driven models in a Bayesian framework.


Author(s):  
Yabin Zhang ◽  
Tianyu Li ◽  
Luyang Miao ◽  
Prabhleen Kaur ◽  
Shaojie Men ◽  
...  

Soft conductors show great promise in multifunctional sensor applications. However, both electronically and ionically conductive materials are often vulnerable during large deformation or at low temperatures, leading to reduced sensitivity,...


Sign in / Sign up

Export Citation Format

Share Document