orthogonal complement matrix
Recently Published Documents


TOTAL DOCUMENTS

2
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

1994 ◽  
Vol 116 (2) ◽  
pp. 423-428 ◽  
Author(s):  
W. Blajer ◽  
D. Bestle ◽  
W. Schiehlen

A method is proposed for the automatic generation of an orthogonal complement matrix to the constraint matrix for the dynamic analysis of constrained multibody systems. The clue for this method lies in the determination of local constraint matrices and their orthogonal complements relative to the local reference frames of particular constrained points. These matrices are then transformed into the system’s configuration space in order to form the final constraint matrix and its orthogonal complement. The avoidance of singularities in the formulation is discussed. The method is especially suited for the dynamic analysis of multibody systems with many constraints and/or closed-loops.


1990 ◽  
Vol 57 (3) ◽  
pp. 750-757 ◽  
Author(s):  
J. T. Wang

A method for analyzing constrained multibody systems is presented. The method is applicable to a class of problems in which the multibody system is subjected to both force and kinematic constraints. This class of problems cannot be solved by using the classical methods. The method is based upon the concept of partial velocity and generalized forces of Kane’s method to permit the choice of constraint forces for fulfilling both kinematic and force constraints. Thus, the constraint forces or moments at convenient points or bodies may be specified in any desired form. For many applications, the method also allows analysts to choose a constant coefficient matrix for the undetermined force term to greatly reduce the burden of repeatedly computing its orthogonal complement matrix in solving the differential algebraic dynamic equations. Two examples illustrating the concepts are presented.


Sign in / Sign up

Export Citation Format

Share Document