quiver representations
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 31)

H-INDEX

13
(FIVE YEARS 2)

Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3216
Author(s):  
Marco Armenta ◽  
Pierre-Marc Jodoin

In this work, we show that neural networks can be represented via the mathematical theory of quiver representations. More specifically, we prove that a neural network is a quiver representation with activation functions, a mathematical object that we represent using a network quiver. Furthermore, we show that network quivers gently adapt to common neural network concepts such as fully connected layers, convolution operations, residual connections, batch normalization, pooling operations and even randomly wired neural networks. We show that this mathematical representation is by no means an approximation of what neural networks are as it exactly matches reality. This interpretation is algebraic and can be studied with algebraic methods. We also provide a quiver representation model to understand how a neural network creates representations from the data. We show that a neural network saves the data as quiver representations, and maps it to a geometrical space called the moduli space, which is given in terms of the underlying oriented graph of the network, i.e., its quiver. This results as a consequence of our defined objects and of understanding how the neural network computes a prediction in a combinatorial and algebraic way. Overall, representing neural networks through the quiver representation theory leads to 9 consequences and 4 inquiries for future research that we believe are of great interest to better understand what neural networks are and how they work.


Author(s):  
Hiroshi Takeuchi

AbstractThis paper is intended to introduce a filtration analysis of sampled maps based on persistent homology, providing a new method for reconstructing the underlying maps. The key idea is to extend the definition of homology induced maps of correspondences using the framework of quiver representations. Our definition of homology induced maps is given by most persistent direct summands of representations. The direct summands uniquely determine a persistent homology. We provide stability theorems of this process and show that the output persistent homology of the sampled map is the same as that of the underlying map if the sample is sufficiently dense. Compared to existing methods using eigenspace functors, our filtration analysis represents an important advantage that no prior information related to the eigenvalues of the underlying map is required. Some numerical examples are given to demonstrate the effectiveness of our method.


Author(s):  
Xin Fang ◽  
Ghislain Fourier ◽  
Markus Reineke

AbstractWe relate quantum degree cones, parametrizing PBW degenerations of quantized enveloping algebras, to (negative tight monomial) cones introduced by Lusztig in the study of monomials in canonical bases, to K-theoretic cones for quiver representations, and to some maximal prime cones in tropical flag varieties.


Sign in / Sign up

Export Citation Format

Share Document