metric basis
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 15)

H-INDEX

1
(FIVE YEARS 0)

Author(s):  
Anni Hakanen ◽  
Ville Junnila ◽  
Tero Laihonen ◽  
Ismael G. Yero
Keyword(s):  

2021 ◽  
Vol 9 ◽  
Author(s):  
Sunny Kumar Sharma ◽  
Hassan Raza ◽  
Vijay Kumar Bhat

Minimum resolving sets (edge or vertex) have become an integral part of molecular topology and combinatorial chemistry. Resolving sets for a specific network provide crucial information required for the identification of each item contained in the network, uniquely. The distance between an edge e = cz and a vertex u is defined by d(e, u) = min{d(c, u), d(z, u)}. If d(e1, u) ≠ d(e2, u), then we say that the vertex u resolves (distinguishes) two edges e1 and e2 in a connected graph G. A subset of vertices RE in G is said to be an edge resolving set for G, if for every two distinct edges e1 and e2 in G we have d(e1, u) ≠ d(e2, u) for at least one vertex u ∈ RE. An edge metric basis for G is an edge resolving set with minimum cardinality and this cardinality is called the edge metric dimension edim(G) of G. In this article, we determine the edge metric dimension of one-pentagonal carbon nanocone (1-PCNC). We also show that the edge resolving set for 1-PCNC is independent.


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2789
Author(s):  
Alejandro Estrada-Moreno

Given a connected graph G=(V(G),E(G)), a set S⊆V(G) is said to be a k-metric generator for G if any pair of different vertices in V(G) is distinguished by at least k elements of S. A metric generator of minimum cardinality among all k-metric generators is called a k-metric basis and its cardinality is the k-metric dimension of G. We initially present a linear programming problem that describes the problem of finding the k-metric dimension and a k-metric basis of a graph G. Then we conducted a study on the k-metric dimension of a unicyclic graph.


2021 ◽  
Vol 14 (3) ◽  
pp. 773-782
Author(s):  
Jean Mansanadez Cabaro ◽  
Helen Rara

Let G be a connected graph. An ordered set of vertices {v1, ..., vl} is a 2-resolving set in G if, for any distinct vertices u, w ∈ V (G), the lists of distances (dG(u, v1), ..., dG(u, vl)) and (dG(w, v1), ..., dG(w, vl)) differ in at least 2 positions. If G has a 2-resolving set, we denote the least size of a 2-resolving set by dim2(G), the 2-metric dimension of G. A 2-resolving set of size dim2(G) is called a 2-metric basis for G. This study deals with the concept of 2-resolving set of a graph. It  characterizes the 2-resolving set in the join and corona of graphs and determine theexact values of the 2-metric dimension of these graphs.


2021 ◽  
Vol 53 (1) ◽  
pp. 118-133
Author(s):  
Badekara Sooryanarayana ◽  
Suma Agani Shanmukha

A subset  of vertices of a simple connected graph is a neighborhood set (n-set) of  G if G is the union of subgraphs of G induced by the closed neighbors of elements in S. Further, a set S is a resolving set of G if for each pair of distinct vertices x,y of G, there is a vertex s∈ S such that d(s,x)≠d(s,y). An n-set that serves as a resolving set for G is called an nr-set of G. The nr-set with least cardinality is called an nr-metric basis of G and its cardinality is called the neighborhood metric dimension of graph G. In this paper, we characterize graphs of neighborhood metric dimension two.


2020 ◽  
Vol 28 (3) ◽  
pp. 15-37
Author(s):  
Muhammad Ahsan ◽  
Zohaib Zahid ◽  
Sohail Zafar

AbstractLet G = (V (G), E(G)) be a connected graph and x, y ∈ V (G), d(x, y) = min{ length of x − y path } and for e ∈ E(G), d(x, e) = min{d(x, a), d(x, b)}, where e = ab. A vertex x distinguishes two edges e1 and e2, if d(e1, x) ≠ d(e2, x). Let WE = {w1, w2, . . ., wk} be an ordered set in V (G) and let e ∈ E(G). The representation r(e | WE) of e with respect to WE is the k-tuple (d(e, w1), d(e, w2), . . ., d(e, wk)). If distinct edges of G have distinct representation with respect to WE, then WE is called an edge metric generator for G. An edge metric generator of minimum cardinality is an edge metric basis for G, and its cardinality is called edge metric dimension of G, denoted by edim(G). The circulant graph Cn(1, m) has vertex set {v1, v2, . . ., vn} and edge set {vivi+1 : 1 ≤ i ≤ n−1}∪{vnv1}∪{vivi+m : 1 ≤ i ≤ n−m}∪{vn−m+ivi : 1 ≤ i ≤ m}. In this paper, it is shown that the edge metric dimension of circulant graphs Cn(1, 2) and Cn(1, 3) is constant.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zafar Hussain ◽  
Mobeen Munir ◽  
Ashfaq Ahmad ◽  
Maqbool Chaudhary ◽  
Junaid Alam Khan ◽  
...  

AbstractResolving set and metric basis has become an integral part in combinatorial chemistry and molecular topology. It has a lot of applications in computer, chemistry, pharmacy and mathematical disciplines. A subset S of the vertex set V of a connected graph G resolves G if all vertices of G have different representations with respect to S. A metric basis for G is a resolving set having minimum cardinal number and this cardinal number is called the metric dimension of G. In present work, we find a metric basis and also metric dimension of 1-pentagonal carbon nanocones. We conclude that only three vertices are minimal requirement for the unique identification of all vertices in this network.


2020 ◽  
Vol 12 (03) ◽  
pp. 2050037
Author(s):  
Ruby Nasir ◽  
Zohaib Zahid ◽  
Sohail Zafar

The minimum edge version of metric basis is the smallest set [Formula: see text] of edges in a connected graph [Formula: see text] such that for every pair of edges [Formula: see text] [Formula: see text][Formula: see text] there exists an edge [Formula: see text] [Formula: see text][Formula: see text] for which [Formula: see text] [Formula: see text] [Formula: see text] holds. In this paper, the families of grid graphs and generalized prism graphs have been studied for edge version of metric dimension. Edge version of metric dimension is found to be constant for both families of graphs.


Let G = (V, E, ) be a fuzzy graph. Let M be a subset of V. M is said to be a fuzzy metric basis of G if for every pair of vertices x, y  V ‒ M, there exists a vertex w  M such that d (w, x)  d (w, y). The number of elements in M is said to be fuzzy metric dimension (FMD) of G and is denoted by  (G). The elements in M are called as source vertices. In this paper, we study the fuzzy metric dimension of fuzzy hypercube Qn, fuuzy Boolean Graph BG2 (G) and fuzzy Boolean Graph BG3 (G).


Sign in / Sign up

Export Citation Format

Share Document