rna structure prediction
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 11)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
pp. 209-237
Author(s):  
Manoj Kumar Gupta ◽  
Gayatri Gouda ◽  
Ravindra Donde ◽  
Piyali Goswami ◽  
N. Rajesh ◽  
...  

2020 ◽  
Vol 16 (10) ◽  
pp. e1008387 ◽  
Author(s):  
Elena Rivas

Knowing the structure of conserved structural RNAs is important to elucidate their function and mechanism of action. However, predicting a conserved RNA structure remains unreliable, even when using a combination of thermodynamic stability and evolutionary covariation information. Here we present a method to predict a conserved RNA structure that combines the following three features. First, it uses significant covariation due to RNA structure and removes spurious covariation due to phylogeny. Second, it uses negative evolutionary information: basepairs that have variation but no significant covariation are prevented from occurring. Lastly, it uses a battery of probabilistic folding algorithms that incorporate all positive covariation into one structure. The method, named CaCoFold (Cascade variation/covariation Constrained Folding algorithm), predicts a nested structure guided by a maximal subset of positive basepairs, and recursively incorporates all remaining positive basepairs into alternative helices. The alternative helices can be compatible with the nested structure such as pseudoknots, or overlapping such as competing structures, base triplets, or other 3D non-antiparallel interactions. We present evidence that CaCoFold predictions are consistent with structures modeled from crystallography.


2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Marc-André Bossanyi ◽  
Valentin Carpentier ◽  
Jean-Pierre S Glouzon ◽  
Aïda Ouangraoua ◽  
Yoann Anselmetti

Abstract Predicting RNA structure is crucial for understanding RNA’s mechanism of action. Comparative approaches for the prediction of RNA structures can be classified into four main strategies. The three first—align-and-fold, align-then-fold and fold-then-align—exploit multiple sequence alignments to improve the accuracy of conserved RNA-structure prediction. Align-and-fold methods perform generally better, but are also typically slower than the other alignment-based methods. The fourth strategy—alignment-free—consists in predicting the conserved RNA structure without relying on sequence alignment. This strategy has the advantage of being the faster, while predicting accurate structures through the use of latent representations of the candidate structures for each sequence. This paper presents aliFreeFoldMulti, an extension of the aliFreeFold algorithm. This algorithm predicts a representative secondary structure of multiple RNA homologs by using a vector representation of their suboptimal structures. aliFreeFoldMulti improves on aliFreeFold by additionally computing the conserved structure for each sequence. aliFreeFoldMulti is assessed by comparing its prediction performance and time efficiency with a set of leading RNA-structure prediction methods. aliFreeFoldMulti has the lowest computing times and the highest maximum accuracy scores. It achieves comparable average structure prediction accuracy as other methods, except TurboFoldII which is the best in terms of average accuracy but with the highest computing times. We present aliFreeFoldMulti as an illustration of the potential of alignment-free approaches to provide fast and accurate RNA-structure prediction methods.


Author(s):  
Zhendong Liu ◽  
Gang Li ◽  
Jun S. Liu

There are some NP-hard problems in the prediction of RNA structures. Prediction of RNA folding structure in RNA nucleotide sequence remains an unsolved challenge. We investigate the computing algorithm in RNA folding structural prediction based on extended structure and basin hopping graph, it is a computing mode of basin hopping graph in RNA folding structural prediction including pseudoknots. This study presents the predicting algorithm based on extended structure, it also proposes an improved computing algorithm based on barrier tree and basin hopping graph, which are the attractive approaches in RNA folding structural prediction. Many experiments have been implemented in Rfam14.1 database and PseudoBase database, the experimental results show that our two algorithms are efficient and accurate than the other existing algorithms.


Author(s):  
Elena Rivas

AbstractKnowing the structure of conserved structural RNAs is important to elucidate their function and mechanism of action. However, predicting a conserved RNA structure remains unreliable, even when using a combination of thermodynamic stability and evolutionary covariation information. Here we present a method to predict a conserved RNA structure that combines the following three features. First, it uses significant covariation due to RNA structure and removes spurious covariation due to phylogeny. Second, it uses negative evolutionary information: basepairs that have variation but no significant covariation are prevented from occurring. Lastly, it uses a battery of probabilistic folding algorithms that incorporate all positive covariation into one structure. The method, named CaCoFold (Cascade variation/covariation Constrained Folding algorithm), predicts a nested structure guided by a maximal subset of positive basepairs, and recursively incorporates all remaining positive basepairs into alternative helices. The alternative helices can be compatible with the nested structure such as pseudoknots, or overlapping such as competing structures, base triplets, or other 3D non-antiparallel interactions. We present evidence that CaCoFold predictions are consistent with structures modeled from crystallography.Author SummaryThe availability of deeper comparative sequence alignments and recent advances in statistical analysis of RNA sequence covariation have made it possible to identify a reliable set of conserved base pairs, as well as a reliable set of non-basepairs (positions that vary without covarying). Predicting an overall consensus secondary structure consistent with a set of individual inferred pairs and non-pairs remains a problem. Current RNA structure prediction algorithms that predict nested secondary structures cannot use the full set of inferred covarying pairs, because covariation analysis also identifies important non-nested pairing interactions such as pseudoknots, base triples, and alternative structures. Moreover, although algorithms for incorporating negative constraints exist, negative information from covariation analysis (inferred non-pairs) has not been systematically exploited.Here I introduce an efficient approximate RNA structure prediction algorithm that incorporates all inferred pairs and excludes all non-pairs. Using this, and an improved visualization tool, I show that the method correctly identifies many non-nested structures in agreement with known crystal structures, and improves many curated consensus secondary structure annotations in RNA sequence alignment databases.


Author(s):  
Grace Meng ◽  
Marva Tariq ◽  
Swati Jain ◽  
Shereef Elmetwaly ◽  
Tamar Schlick

Abstract Summary We launch a webserver for RNA structure prediction and design corresponding to tools developed using our RNA-As-Graphs (RAG) approach. RAG uses coarse-grained tree graphs to represent RNA secondary structure, allowing the application of graph theory to analyze and advance RNA structure discovery. Our webserver consists of three modules: (a) RAG Sampler: samples tree graph topologies from an RNA secondary structure to predict corresponding tertiary topologies, (b) RAG Builder: builds three-dimensional atomic models from candidate graphs generated by RAG Sampler, and (c) RAG Designer: designs sequences that fold onto novel RNA motifs (described by tree graph topologies). Results analyses are performed for further assessment/selection. The Results page provides links to download results and indicates possible errors encountered. RAG-Web offers a user-friendly interface to utilize our RAG software suite to predict and design RNA structures and sequences. Availability and implementation The webserver is freely available online at: http://www.biomath.nyu.edu/ragtop/. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 47 (11) ◽  
pp. 5563-5572 ◽  
Author(s):  
Jian Wang ◽  
Benfeard Williams ◽  
Venkata R Chirasani ◽  
Andrey Krokhotin ◽  
Rajeshree Das ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document