amino acid substitution matrices
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 2)

H-INDEX

11
(FIVE YEARS 0)

2018 ◽  
Author(s):  
Elias Primetis ◽  
Spyridon Chavlis ◽  
Pavlos Pavlidis

AbstractIntra-protein residual vicinities depend on the involved amino acids. Energetically favorable vicinities (or interactions) have been preserved during evolution, while unfavorable vicinities have been eliminated. We describe, statistically, the interactions between amino acids using resolved protein structures. Based on the frequency of amino acid interactions, we have devised an amino acid substitution model that implements the following idea: amino acids that have similar neighbors in the protein tertiary structure can replace each other, while substitution is more difficult between amino acids that prefer different spatial neighbors. Using known tertiary structures for α-helical membrane (HM) proteins, we build evolutionary substitution matrices. We constructed maximum likelihood phylogenies using our amino acid substitution matrices and compared them to widely-used methods. Our results suggest that amino acid substitutions are associated with the spatial neighborhoods of amino acid residuals, providing, therefore, insights into the amino acid substitution process.


2011 ◽  
Vol 17 (4) ◽  
pp. 353-364 ◽  
Author(s):  
Alastair P. Droop ◽  
Simon J. Hickinbotham

We report a study of networks constructed from mutation patterns observed in biology. These networks form evolutionary trajectories, which allow for both frequent substitution of closely related structures, and a small evolutionary distance between any two structures. These two properties define the small-world phenomenon. The mutation behavior between tokens in an evolvable artificial chemistry determines its ability to explore evolutionary space. This concept is underrepresented in previous work on string-based chemistries. We argue that small-world mutation networks will confer better exploration of the evolutionary space than either random or fully regular mutation strategies. We calculate network statistics from two data sets: amino acid substitution matrices, and codon-level single point mutations. The first class are observed data from protein alignments; while the second class is defined by the standard genetic code that is used to translate RNA into amino acids. We report a methodology for creating small-world mutation networks for artificial chemistries with arbitrary node count and connectivity. We argue that ALife systems would benefit from this approach, as it delivers a more viable exploration of evolutionary space.


Sign in / Sign up

Export Citation Format

Share Document