stomach compartment
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 0)

Polar Biology ◽  
2021 ◽  
Author(s):  
Kathrine A. Ryeng ◽  
Jan Lakemeyer ◽  
Marco Roller ◽  
Peter Wohlsein ◽  
Ursula Siebert

AbstractDue to little prior knowledge, the present study aims to investigate the health status of bycaught harbour porpoises from the northernmost Arctic Norwegian coastline. Gross, histopathological and parasitological investigations were conducted on 61 harbour porpoises (Phocoena phocoena phocoena) accidentally captured in fishing gear from February to April 2017 along the coast of Northern Norway. Most animals displayed a good nutritional status, none were emaciated. Pulmonary nematodiasis (Pseudalius inflexus, Halocercus invaginatus and Torynurus convolutus) was found in 77% and associated with severe bronchopneumonia in 33% of the animals. The majority (92%) had parasites in the stomach and intestine (Anisakis simplex sensu stricto (s. s.), Pholeter gastrophilus, Diphyllobothrium stemmacephalum, Hysterothylacium aduncum and Pseudoterranova decipiens s. s.). The prevalence of gastric nematodiasis was 69%. In the 1st stomach compartment A. simplex s. s. was found in 30% of the animals, causing severe chronic ulcerative gastritis in 23%. Campula oblonga infected the liver and pancreas of 90% and 10% of the animals, respectively, causing severe cholangitis/pericholangitis/hepatitis in 67% and moderate pancreatitis in 10% of the animals. Mesenteric and pulmonary lymphadenitis was detected in 82% and 7% of the animals, respectively. In conclusion, the major pathological findings in the investigated Arctic porpoises were parasitoses in multiple organs with associated severe lesions, particularly in the lung, liver and stomach. The animals were generally well nourished and most showed freshly ingested prey in their stomachs. The present study indicates that the harbour porpoises were able to tolerate the detected parasitic burden and associated lesions without significant health problems.


2011 ◽  
Vol 1 (10) ◽  
pp. 389 ◽  
Author(s):  
Katia Sivieri ◽  
Fernanda Bianchi ◽  
Maria A. Tallarico ◽  
Elizeu A. Rossi

Background: Enterococci are used in a large number of dairy products, such as starter cultures in food supplements and in foods considered functional. In vitro gut fermentation models present an unmatched opportunity of performing studies frequently allenged in humans and animals owing to ethical concerns. A dynamic model of the human intestinal microbial ecosystem (SHIME) was designed to better simulate conditions intestinal microbiota.Methods: The SHIME model was used to study the effect of Enterococuus faecium CRL 183 on the fermentation pattern of the colon microbiota. Initially, an inoculum prepared from human feces was introduced into the reactor vessels and stabilized over 2 wk using a culture medium. This stabilization period was followed by a 2-wk control period during which the microbiota were monitored. The microbiota were then subjected to a 4-wk treatment period by adding 108 CFU/mL of the Enterococcus faecium CRL 183 to vessel one (the stomach compartment).Results: The addition resulted into an overall increase of bacterial marker populations (Enterobacteriaceae, Lactobacillus spp., Bifidobacterium spp. and Clostridium spp.), with a significant increase of the Lactobacillus sp. and Bifidobacterium sp populations. The short-chain fatty acid (SCFA) concentration increased during the supplementation period; this was due mainly to a significant increase in the levels of acetic, butyric and propionic acids. Ammonium concentrations increased during the supplementation period.Conclusions: Results showed that the major effect of E. faecium CRL 183 was found in the ascendant and transverse colon. Key words: Gut microbiota, Enterococcus, Gastrointestinal resource management, Simulator of Human Intestinal Microbial Ecosystem (SHIME)


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
D. C. Beck ◽  
Honglin Jiang ◽  
Liqing Zhang

Although the nature of ruminant evolution is still disputed, current theory based on physiology and genetic analysis suggests that the abomasum is the evolutionarily oldest stomach compartment, the rumen evolved some time after the abomasum, and the omasum is the evolutionarily youngest stomach compartment. In addition, there is some evidence of relaxed selective constraint in the stomach-like organ and the foregut shortly after the foregut formation event. Along with the assumption of a mean, stochastic rate of evolution, analysis of differences in genetic profiles among digestive body organs can give clues to the relationships among these organs. The presence of large numbers of uniquely expressed entries in the abomasum and rumen indicates either a period of relaxed selective constraint or greater evolutionary age. Additionally, differences in expression profiles indicate that the abomasum, rumen, and intestine are more closely related to each other, while the reticulum and omasum are more closely related to the rumen. Functional analysis using Gene Ontology (GO) categories also supports the proposed evolutionary relationships by identifying shared functions, such as muscle activity and development, lipid transport, and urea metabolism, between all sections of the digestive tract investigated.


2002 ◽  
Vol 8 (2) ◽  
pp. 16-19
Author(s):  
S.C. Ralphs ◽  
K.F. Ralphs ◽  
K.S. Yoho ◽  
P. Pacchiana
Keyword(s):  

1999 ◽  
Vol 10 (2) ◽  
pp. 107-110
Author(s):  
Li Junsheng ◽  
Ma Jianzhang ◽  
Jiang Zhaowen ◽  
Wang Wen

Sign in / Sign up

Export Citation Format

Share Document