bacterial marker
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 7)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 7 (8) ◽  
pp. 586
Author(s):  
Dong Liu ◽  
Jesús Perez-Moreno ◽  
Peng Zhang ◽  
Ran Wang ◽  
Caspar C. C. Chater ◽  
...  

The uniquely compartmentalized fruiting body structure of the ectomycorrhizal fungus (EMF) Tricholoma matsutake, is a hotspot of microbial habitation and interaction. However, microbial diversity within this microniche structure of the EMF is rarely investigated. Furthermore, there is limited information concerning microbiomes associated with sporomes belonging to the ubiquitous fungal phylum Basidiomycota, particularly with respect to fungus-EMF interactions. In this study, we conducted high throughput sequencing, using ITS (fungal) and 16S rRNA (bacterial) marker genes to characterize and compare fruiting body microbiomes in the outer (pileipellis and stipitipellis) and inner layers (pileum context, stipe context, and lamellae) of the fruiting body of T. matsutake. Our results show the number of unique bacterial operational taxonomic units (OTUs) among the different compartments ranged from 410 to 499 and was more than double that of the shared/common OTUs (235). Micrococcales, Bacillales, Caulobacter, and Sphingomonas were the primary significant bacterial taxa within the different compartments of the dissected T. matsutake fruiting body. Non-parametric multivariate analysis of variance showed significant compartmental differences for both the bacterial and the fungal community structure within the T. matsutake fruiting body. The metabolic profiling revealed putative metabolisms (of amino acids, carbohydrates, and nucleotides) and the biosynthesis of secondary metabolites to be highly enriched in outer layers; in the inner parts, the metabolisms of energy, cofactors, vitamins, and lipids were significantly higher. This study demonstrates for the first time the distinct compartmentalization of microbial communities and potential metabolic function profiles in the fruiting body of an economically important EMF T. matsutake.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Eric J. Raes ◽  
Kristen Karsh ◽  
Swan L. S. Sow ◽  
Martin Ostrowski ◽  
Mark V. Brown ◽  
...  

AbstractGlobal oceanographic monitoring initiatives originally measured abiotic essential ocean variables but are currently incorporating biological and metagenomic sampling programs. There is, however, a large knowledge gap on how to infer bacterial functions, the information sought by biogeochemists, ecologists, and modelers, from the bacterial taxonomic information (produced by bacterial marker gene surveys). Here, we provide a correlative understanding of how a bacterial marker gene (16S rRNA) can be used to infer latitudinal trends for metabolic pathways in global monitoring campaigns. From a transect spanning 7000 km in the South Pacific Ocean we infer ten metabolic pathways from 16S rRNA gene sequences and 11 corresponding metagenome samples, which relate to metabolic processes of primary productivity, temperature-regulated thermodynamic effects, coping strategies for nutrient limitation, energy metabolism, and organic matter degradation. This study demonstrates that low-cost, high-throughput bacterial marker gene data, can be used to infer shifts in the metabolic strategies at the community scale.


2021 ◽  
Author(s):  
Jiayi Huang ◽  
Thiara Sana Ahmed ◽  
Maciej Baranski ◽  
Elizabeth Lee ◽  
Shruthi Pandi Chelvam ◽  
...  

2020 ◽  
Author(s):  
Eric Raes ◽  
Kristen Karsh ◽  
Swan Sow ◽  
Martin Ostrowski ◽  
Mark Brown ◽  
...  

Abstract Global oceanographic monitoring initiatives started by measuring abiotic essential ocean variables but are currently incorporating biological and metagenomic sampling. There is, however, a large gap between the taxonomic information produced by bacterial genomic analyses and information on bacterial functions, which is sought by biogeochemists, ecologists, and modellers. Here, we provide a mechanistic understanding of how a bacterial marker gene (16S rRNA) can be used to derive latitudinal trends for core metabolic pathways and, ultimately, be used for mapping ecosystem function change in global monitoring campaigns. From a transect spanning 7000 km in the South Pacific Ocean we identified ten metabolic pathways, which were related to ecological processes of primary productivity, temperature-regulated growth, coping strategies for nutrient limitation, energy metabolism, and degradation. We compared and contrasted these metabolic pathways with measured physico-biochemical parameters within and between oceanographic provinces, and found that functional diversity is as affected by oceanographic boundaries as is taxonomic composition. This study demonstrates that bacterial marker gene data, sampled and analysed with low costs and high throughput, can be used to infer on metabolic changes at the community scale. Such analyses may provide insight into the drivers of ecological changes and, overall, into the effects of biodiversity on marine ecosystem functioning.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3690
Author(s):  
Laura Pala ◽  
Teja Sirec ◽  
Urs Spitz

The ability to detect, identify and quantify bacteria is crucial in clinical diagnostics, environmental testing, food security settings and in microbiology research. Recently, the threat of multidrug-resistant bacterial pathogens pushed the global scientific community to develop fast, reliable, specific and affordable methods to detect bacterial species. The use of synthetically modified enzyme substrates is a convenient approach to detect bacteria in a specific, economic and rapid manner. The method is based on the use of specific enzyme substrates for a given bacterial marker enzyme, conjugated to a signalogenic moiety. Following enzymatic reaction, the signalophor is released from the synthetic substrate, generating a specific and measurable signal. Several types of signalophors have been described and are defined by the type of signal they generate, such as chromogenic, fluorogenic, luminogenic, electrogenic and redox. Signalophors are further subdivided into groups based on their solubility in water, which is key in defining their application on solid or liquid media for bacterial culturing. This comprehensive review describes synthetic enzyme substrates and their applications for bacterial detection, showing their mechanism of action and their synthetic routes.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Nengneng Zheng ◽  
Renyong Guo ◽  
Yinyu Yao ◽  
Meiyuan Jin ◽  
Yiwen Cheng ◽  
...  

Vaginal dysbiosis has been identified to be associated with adverse pregnancy outcomes, such as preterm delivery and premature rupture of membranes. However, the overall structure and composition of vaginal microbiota in different trimesters of the pregnant women has not been fully elucidated. In this study, the physiological changes of the vaginal microbiota in healthy pregnant women were investigated. A total of 83 healthy pregnant participants were enrolled, who are in the first, second, or third pregnancy trimester. Quantitative real-time PCR was used to explore the abundant bacteria in the vaginal microbiota. No significant difference in the abundance of Gardnerella, Atopobium, Megasphaera, Eggerthella, Leptotrichia/Sneathia, or Prevotella was found among different trimesters, except Lactobacillus. Compared with the first pregnancy trimester, the abundance of L. iners decreased in the second and third trimester while the abundance of L. crispatus was increased in the second trimester. Moreover, we also found that vaginal cleanliness is correlated with the present of Lactobacillus, Atopobium, and Prevotella and leukocyte esterase is associated with Lactobacillus, Atopobium, Gardnerella, Eggerthella, Leptotrichia/Sneathia, and Prevotella. For those whose vaginal cleanliness raised or leukocyte esterase became positive, the richness of L. iners increased, while that of L. crispatus decreased significantly. Our present data indicated that the altered vaginal microbiota, mainly Lactobacillus, could be observed among different trimesters of pregnancy and L. iners could be considered as a potential bacterial marker for evaluating vaginal cleanliness and leukocyte esterase.


2019 ◽  
Vol 10 ◽  
Author(s):  
Songhe Guo ◽  
Yongfan Lu ◽  
Banglao Xu ◽  
Wan Wang ◽  
Jianhua Xu ◽  
...  

2018 ◽  
Vol 154 (6) ◽  
pp. S-110
Author(s):  
Qiaoyi Liang ◽  
Yingxuan Chen ◽  
Sunny H. Wong ◽  
Thomas Kwong ◽  
Jing-Yuan Fang ◽  
...  

2014 ◽  
Vol 81 (4) ◽  
pp. 1257-1266 ◽  
Author(s):  
Matthieu Barret ◽  
Martial Briand ◽  
Sophie Bonneau ◽  
Anne Préveaux ◽  
Sophie Valière ◽  
...  

ABSTRACTSeeds carry complex microbial communities, which may exert beneficial or deleterious effects on plant growth and plant health. To date, the composition of microbial communities associated with seeds has been explored mainly through culture-based diversity studies and therefore remains largely unknown. In this work, we analyzed the structures of the seed microbiotas of different plants from the family Brassicaceae and their dynamics during germination and emergence through sequencing of three molecular markers: the ITS1 region of the fungal internal transcribed spacer, the V4 region of 16S rRNA gene, and a species-specific bacterial marker based on a fragment ofgyrB. Sequence analyses revealed important variations in microbial community composition between seed samples. Moreover, we found that emergence strongly influences the structure of the microbiota, with a marked reduction of bacterial and fungal diversity. This shift in the microbial community composition is mostly due to an increase in the relative abundance of some bacterial and fungal taxa possessing fast-growing abilities. Altogether, our results provide an estimation of the role of the seed as a source of inoculum for the seedling, which is crucial for practical applications in developing new strategies of inoculation for disease prevention.


Sign in / Sign up

Export Citation Format

Share Document